History, asked by CharmingChoco, 5 months ago

if \displaystyle\sf\int\dfrac{sec^2x-2010}{sin^{2010}x}dx = \dfrac{P(x)}{sin^{2010}x}+C find P(π/3)​

Answers

Answered by Anonymous
3

we have \displaystyle\sf\int\dfrac{sec^2x-2010}{sin^{2010}x}dx

\displaystyle\sf =\int sec^2 x(sin\:x)^{-2010} - 2010\int \dfrac{1}{(sin\;x)^{2010}} dx

\displaystyle\sf = I_1-I_2

applying by parts on \displaystyle\sf I_1

\displaystyle\sf\implies I_2 = \dfrac{tan\:x}{(sin\:x)^{2010}} + 2010\int \dfrac{tanx\:cosx}{(sinx)^{2011}} dx

\displaystyle\sf = \dfrac{tanx}{(sinx)^{2010}} + 2010\int \dfrac{dx}{(sinx)^{2010}}

\displaystyle\sf = \dfrac{tan\:x}{(sin\:x)^{2010}} = \dfrac{P(x)}{(sin\:x)^{2010}}

\displaystyle\sf \implies P(x) = tanx

\displaystyle\sf\implies P\left(\dfrac{\pi}{3}\right) = tan\left(\dfrac{\pi}{3}\right)

\displaystyle\sf = \sqrt{3}


DynamicNinja: Ego satisfied ツ
DynamicNinja: Nice answer btw
Anonymous: what do you mean by "Ego satisfied ツ"
Similar questions