Math, asked by HappyIearning, 1 month ago

If \displaystyle\sf T_n = sin^n\:\theta+cos^n\:\theta , prove that \displaystyle\sf \dfrac{T_3 - T_5}{T_1} = \dfrac{T_5 - T_7}{T_3}

Answers

Answered by Anonymous
198

For solution refer to attachments

Attachments:
Answered by mathdude500
9

\large\underline{\sf{Given- }}

\rm :\longmapsto\:T_n =  {sin}^{n}\theta \:  +  {cos}^{n}\theta

\large\underline{\sf{To\:prove-}}

\rm :\longmapsto\:\dfrac{T_3 - T_5}{T_1}  = \dfrac{T_5 - T_7}{T_3}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{ \bf \:  1 - {sin}^{2}x =   {cos}^{2}x}

\boxed{ \bf \:  1 - {cos}^{2}x =   {sin}^{2}x}

\large\underline{\bf{Solution-}}

Given that,

\rm :\longmapsto\:T_n =  {sin}^{n}\theta \:  +  {cos}^{n}\theta

Thus,

\rm :\longmapsto\:T_1 =  {sin}^{}\theta \:  +  {cos}^{}\theta

\rm :\longmapsto\:T_3 =  {sin}^{3}\theta \:  +  {cos}^{3}\theta

\rm :\longmapsto\:T_5 =  {sin}^{5}\theta \:  +  {cos}^{5}\theta

\rm :\longmapsto\:T_7 =  {sin}^{7}\theta \:  +  {cos}^{7}\theta

Now,

Consider,

\rm :\longmapsto\:\dfrac{T_3 - T_5}{T_1}

\sf \:  =  \:  \: \dfrac{({sin}^{3}\theta +  {cos}^{3}\theta) - ( {sin}^{5}\theta +  {cos}^{5} \theta)}{sin\theta + cos\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{3}\theta +  {cos}^{3}\theta - {sin}^{5}\theta - {cos}^{5} \theta}{sin\theta + cos\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{3}\theta  -   {sin}^{5}\theta  +  {cos}^{3}\theta - {cos}^{5} \theta}{sin\theta + cos\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{3}\theta(1  -   {sin}^{2}\theta)  +  {cos}^{3}\theta(1 - {cos}^{2})\theta}{sin\theta + cos\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{3}\theta {cos}^{2}\theta+{cos}^{3}\theta{sin}^{2}\theta}{sin\theta + cos\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{2}\theta {cos}^{2}\theta({cos}^{}\theta + {sin}^{}\theta)}{sin\theta + cos\theta}

\sf \:  =  \:  \:  {sin}^{2}\theta +  {cos}^{2}\theta

\bf\implies \:\:\dfrac{T_3 - T_5}{T_1} =  {sin}^{2}\theta {cos}^{2}\theta -  - (1)

Consider,

\rm :\longmapsto\:\dfrac{T_5 - T_7}{T_3}

\sf \:  =  \:  \: \dfrac{({sin}^{5}\theta +  {cos}^{5}\theta) - ( {sin}^{7}\theta +  {cos}^{7} \theta)}{ {sin}^{3}\theta +  {cos}^{3}\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{5}\theta +  {cos}^{5}\theta-{sin}^{7}\theta - {cos}^{7} \theta}{ {sin}^{3}\theta +  {cos}^{3}\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{5}\theta -   {sin}^{7}\theta + {cos}^{5}\theta - {cos}^{7} \theta}{ {sin}^{3}\theta +  {cos}^{3}\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{5}\theta(1 -   {sin}^{2}\theta) + {cos}^{5}\theta(1 - {cos}^{2}\theta)}{ {sin}^{3}\theta +  {cos}^{3}\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{5}\theta{cos}^{2}\theta+ {cos}^{5}\theta{sin}^{2}\theta}{ {sin}^{3}\theta +  {cos}^{3}\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{2}\theta{cos}^{2}\theta \: ({cos}^{3}\theta + {sin}^{3}\theta)}{ {sin}^{3}\theta +  {cos}^{3}\theta}

\sf \:  =  \:  \:  {sin}^{2}\theta {cos}^{2}\theta

\bf\implies \:\:\dfrac{T_5 - T_7}{T_3} =  {sin}^{2}\theta {cos}^{2}\theta -  - (2)

Hence,

From equation (1) and equation (2), concluded that

\bf :\longmapsto\:\dfrac{T_3 - T_5}{T_1}  = \dfrac{T_5 - T_7}{T_3}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

\boxed{ \bf \:  1  +  {tan}^{2}x =   {sec}^{2}x}

\boxed{ \bf \:  {tan}^{2}x =   {sec}^{2}x - 1}

\boxed{ \bf \:  {cot}^{2}x =   {cosec}^{2}x - 1}

\boxed{ \bf \:  1  +  {cot}^{2}x =   {cosec}^{2}x}

\boxed{ \bf \:{cosec}^{2}x -  {cot}^{2}x = 1 }

\boxed{ \bf \:{sec}^{2}x -  {tan}^{2}x = 1 }

\boxed{ \bf \:{sin}^{2}x  +  {cos}^{2}x = 1 }

Similar questions