Math, asked by Ripok678, 4 months ago

If \displaystyle{\:x\:-\:\dfrac{1}{x}\:=\:5}, find the value of \displaystyle{\:1\:.\:x^2\:+\:\dfrac{1}{x^2}}\displaystyle{\:2\:.\:x^4\:+\:\dfrac{1}{x^4}}

Answers

Answered by AestheticSoul
20

Given

  • \sf{x - \dfrac{1}{x} = 5}

To find

  • The value of :-
  • \sf{x^2 + \dfrac{1}{x^2}}

  • \sf{x^4 + \dfrac{1}{x^4}}

Solution

\sf{x - \dfrac{1}{x} = 5}

\underline{ \bf \red{Identity~to~ be~ used~ :-}}

\qquad\leadsto \sf \purple{(a - b)^2 = a^2 + b^2 - 2ab}

Squaring both sides,

: \implies \sf \gray{ \bigg(x -  \dfrac{1}{x} \bigg)^{2}  = (5)^{2}  }

: \implies \sf \gray{( {x})^{2} +   \bigg( \dfrac{1}{x} \bigg)^{2} - 2 \big(x \big) \bigg( \frac{1}{x}  \bigg) = 25} \\

: \implies \sf \gray{( {x})^{2} +   \bigg( \dfrac{1}{x} \bigg)^{2} - 2 \big( \not x \big) \bigg( \frac{1}{ \not x}  \bigg) = 25} \\

: \implies \sf \gray{{x}^{2} +  \dfrac{1}{x^{2}} - 2  = 25}

: \implies \sf \gray{{x}^{2} +  \dfrac{1}{x^{2}}   = 25 + 2}

: \implies \sf \gray{{x}^{2} +  \dfrac{1}{x^{2}}   = 27}

\longmapsto  \underline {\boxed{{ \bf \red{{x}^{2} +  \dfrac{1}{x^{2}}   = 27}}}} \pink \bigstar

Now, finding the value of \sf{x^4 + \dfrac{1}{x^4}}

\sf{x^4 + \dfrac{1}{x^4}}

Squaring both the sides,

: \implies \sf \gray{ \bigg({x}^{2} +  \dfrac{1}{x^{2}} \bigg)^{2}    =  \big(27 \big)^{2} }

\underline{ \bf \red{Identity~ to~ be~ used~ :-}}

\qquad\leadsto \sf \purple{(a + b)^2 = a^2 + b^2 + 2ab}

: \implies \sf \gray{ \big({x}^{2} \big)^{2} +  \bigg(\dfrac{1}{x^{2}} \bigg)^{2} + 2 \big(x^{2} \big) \bigg( \dfrac{1}{x^{2}} \bigg)     =  \big(27 \big)^{2}}  \\

: \implies \sf \gray{ \big({x}^{2} \big)^{2} +  \bigg(\dfrac{1}{x^{2}} \bigg)^{2} + 2 \big( \not x^{2} \big) \bigg( \dfrac{1}{ \not x^{2}} \bigg)     =  \big(27 \big)^{2}}  \\

: \implies \sf \gray{ {x}^{4} + \dfrac{1}{x^{4}} + 2 =  729}

: \implies \sf \gray{ {x}^{4} + \dfrac{1}{x^{4}} =  729 - 2}

: \implies \sf \gray{ {x}^{4} + \dfrac{1}{x^{4}} =  727}

\longmapsto  \underline {\boxed{{ \bf \red{{x}^{4} +  \dfrac{1}{x^{4}}   = 727}}}} \pink \bigstar

Answered by diajain01
33

{\boxed{\underline{\tt{ \orange{Required  \:  \: Answer:-}}}}}

◉ GIVEN:-

\displaystyle{\:x\:-\:\dfrac{1}{x}\:=\:5}

◉ TO FIND:-

 \displaystyle{\:1.)\:x^2\:+\:\dfrac{1}{x^2}}

\displaystyle{\:2.)\:x^4\:+\:\dfrac{1}{x^4}}

◉FORMULA USED:-

{\boxed{\underline{\tt{\purple{(a-b)^2 = a^2 + b^2 -2ab }}}}}

{\boxed{\underline{\tt{\purple{(a + b)^2 = a^2 + b^2  + 2ab }}}}}

◉SOLUTION:-

\leadsto{ x - \:  \frac{1}{x}  = 5}

Squaring both sides:-

 \leadsto \:  {(x -  \frac{1}{x}) }^{2}  = 25

 \leadsto \:  {x}^{2}  +   \frac{1}{ {x}^{2} }   - 2 \times \cancel{ x} \times  \frac{1}{ \cancel{x}}  = 25

 \leadsto \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 25 + 2

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \therefore \: { \boxed{ \underline{ \sf{ \blue{ {x}^{2}  +  \frac{1}{ {x}^{2} }  = 27}}}}}

NOW, TO FIND:-

\displaystyle{\:x^4\:+\:\dfrac{1}{x^4}}

We will again do squaring of

 \bold{ {x}^{2}  +  \frac{1}{ {x}^{2} }  = 27}

 \leadsto \:  {( {x}^{2}  +  \frac{1}{ {x}^{2} } )}^{2}  =  {27}^{2}

 \leadsto \:  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 \:  \cancel{ {x}^{2}} . \frac{1}{ \cancel{ {x}^{2}} }  = 729

 \leadsto \:  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 729 - 2

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \therefore \: { \boxed{ \underline{ \sf{ \blue{ {x}^{4}  +  \frac{1}{ {x}^{4} }  = 727}}}}}

HOPE IT HELPS

Similar questions