Math, asked by Ripok678, 4 months ago

If \displaystyle{\:x\:-\:\dfrac{1}{x}\:=\:5}, find the value of \displaystyle{\:1\:.\:x^2\:+\:\dfrac{1}{x^2}}\displaystyle{\:2\:.\:x^4\:+\:\dfrac{1}{x^4}}

Answers

Answered by Aditya4113
1

Step-by-step explanation:

Please only one brainlist answer

hope it helps you

Attachments:
Answered by Dinosaurs1842
5

given \: x  -  \dfrac{1}{x}  = 5

find \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }

find \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }

------------------------------------------------------------------------------------------------------------------------------------------

Identity to use : (a-b)² = a² - 2ab + b²

________________________________

(x  -   \dfrac{1}{x}) ^{2} =  {x}^{2}   -  2(x)( \dfrac{1}{x}) +  (\dfrac{1}{x}) ^{2}

 {5}^{2}  =  {x}^{2}   -  2 +  \dfrac{1}{ {x}^{2} }

(x and 1/x gets cancelled)

25 =   {x}^{2}  +  \dfrac{1}{ {x}^{2} }  -  2

25  + 2 =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }

27 =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }

again applying the (a+b)² = a² + 2ab + b² identity, we get :

( {x}^{2}  +  \dfrac{1}{ {x}^{2} }) ^{2}  =  ({x}^{2}) ^{2}  + 2( {x}^{2})( \dfrac{1}{ {x}^{2} }) + ( \dfrac{1}{ {x}^{2} }) ^{2}

x² and 1/x² gets cancelled

 {27}^{2}  =  {x}^{4}  + 2 +  \dfrac{1}{ {x}^{4} }

729 =  {x}^{4}  +  \dfrac{1}{ {x}^{4} }  + 2

729 - 2 =  {x}^{4}  +  \dfrac{1}{ {x}^{4} }

727 =  {x}^{4}  +  \dfrac{1}{ {x}^{4} }

----------------------------------------------------------------------------------------------------------------------------------------------

Some more identities : Extras

a²-b² = (a+b)(a-b)

(x+a)(x+b) = x² + x(a+b) + ab

(a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca

(a+b)³ = a³ + 3a²b + 3ab² + b³

(a-b)³ = a³ - 3a²b + 3ab² - b³

a³ - b³ = (a-b)(a²+ab+b²)

a³ + b³ = (a+b)(a²-ab+b²)

a³ + b³ + c³ = (a+b+c)(a²+b²+c²-ab-bc-ca)

Conditional identity:

if a+b+c = 0,

a³ + b³ + c³ = 3abc

_________________________________________

Similar questions