Math, asked by BendingReality, 11 months ago

If \displaystyle{y=\frac{x \tan x }{\sec x+\tan x} } then find d y / d x

Answers

Answered by Anonymous
5

Answer:

\large\boxed{\sf{\frac{dy}{dx}  = x { \sec }^{3} x +  \sec x \tan x - 2x { \sec }^{2} x \tan x -  { \tan }^{2} x + x \sec x { \tan}^{2}  x}}

Step-by-step explanation:

y=\dfrac{x \tan x }{\sec x+\tan x}

We know that:

 \red{ \sec(x)   -  \tan(x)  =  \dfrac{1}{ \sec(x)  +  \tan(x) } }

Substituting the value, we get,

 =  > y = x \tan x ( \sec x -  \tan x)  \\  \\  =  >  \frac{dy}{dx}  =  ( \sec x -  \tan x)  \frac{d}{dx} (x \tan x) + x \tan(x)  \frac{d}{dx} ( \sec x -  \tan x)  \\  \\  =  >  \frac{dy}{dx}  = ( \sec x -  \tan x) (x \frac{d}{dx}  \tan x +  \tan x  \frac{d}{dx} x) + x \tan x  ( \sec x  \tan x -  { \sec }^{2} x) \\  \\  =  >  \frac{dy}{dx}  = ( \sec x -  \tan x) (x { \sec }^{2} x +  \tan x) + x \sec x { \tan }^{2} x - x \tan x { \sec }^{2} x \\  \\  =  >  \frac{dy}{dx}  = x { \sec}^{3} x +  \sec(x)  \tan(x)  - x { \sec}^{2} x \tan x -  { \tan }^{2} x + x \sec x { \tan }^{2} x - x \tan x { \sec }^{2} x \\  \\  =  >   \orange{\frac{dy}{dx}  = x { \sec }^{3} x +  \sec x \tan x - 2x { \sec }^{2} x \tan x -  { \tan }^{2} x + x \sec x { \tan}^{2}  x}

Answered by Anonymous
2

Answer:

Answer is in attachment:-

Step-by-step explanation:

Mark brainliest and follow me fast guys..

Attachments:
Similar questions