Math, asked by Anonymous, 5 months ago

If
f( {\rm{x}})=\rm{6x}f(x)=6x and b = \rm{\dfrac{a+c}{2}}
then,

a) f( {\rm{a - 3)}} + f {\rm{(c - 3)}}= 2f {\rm{(b - 3)}}f(a−3)+f(c−3)=2f(b−3)

b] \dfrac{ f{\rm{(a - 3)}} - f \rm{{(b - 3)}}}{f {\rm{(b - 3)}} - f {\rm{(c - 3)}}} = 1

c] \dfrac{ f{\rm{(a - 3)}} - f \rm{{(c - 3)}}}{f {\rm{(b - 3)}} - f {\rm{(a - 3)}}} = 2
d] f({\rm{a - 3)}} - f {\rm{(c - 3)}} = \rm 6(a - c)f(a−3)−f(c−3)=6(a−c)


NOTE : This question has more than one Correct answer.​​

Answers

Answered by Anonymous
105

Answer:

Step-by-step explanation:

\Large{\underline{\underline{\bf{Answer–}}}}

Given:

→f(x) = 6x \:  \:  \:  \:  \:  \:  \:  \: →b =  \frac{a + c}{2}  \\  \\→ c = 2b - a

Note : Make sure that every function is in terms of a and b variables only except for exceptions.

════════════════════════════════

⟹f(a - 3) \\ →f(x) = 6x \\  \\ →6(a - 3) \\ →6a - 18 \\  \\ →f(b - 3) \\ →6(b - 3) \\→ 6b - 18 \\  \\  →f(c  - 3) \\→ f(2b - a - 3) \\→12b - 6a - 18

Let's solve for a,

⟹f(a - 3) + f(c - 3) \\ →6a - 18 + 12b - 6a - 18 \\ →12b - 36 \\→ 2(6b - 18) \\ →2f(b - 3) \\  \\  \\ Hence \: Option \: a \: is \: Correct

Let's solve for b,

 \frac{⟹ f(a−3)−f(b−3)}{f(b−3)−f(c−3)} \\ \\ \begin{gathered}\to \sf \dfrac{6a-18-(6b-18)}{6b-18-(12b-6a-18)}\\\\\end{gathered}  \\  \begin{gathered}\to \sf \dfrac{6a-6b}{6b-12b+6a}\\\\\end{gathered} \\  \frac{→6a−6b}{6a−6b}  \\ \leadsto \bf\ \; 1 \\Hence  \: Option  \: b \:  is  \: Correct

Let's solve for d,

Note : Function [LHS and RHS] is in terms of a and c , so proceed through it

⟹f(a−3)−f(c−3) \\  \\ \to \sf 6a-18-(6c-18) \\  \\ \to \sf 6a-6 c\\  \\ \leadsto \bf 6(a-c) \\  \\Hence  \: Option \:   \: d \:   \:  is \:  \:  Correct

________________________

Correct Options : a , b , d

════════════════════════════════

Answered by Anonymous
87

Answer:

Given :

\sf f(x)=6x\ ,\ b=\dfrac{a+c}{2}f(x)=6x , b=

2

a+c

\to \sf c=2b-a→c=2b−a

Note : Make sure that every function is in terms of a and b variables only except for exceptions

Explanation :

════════════════════════════════

\sf f(a-3)f(a−3)

f(x) = 6x

\begin{gathered}\to \sf 6(a-3)\\\to \sf 6a-18\end{gathered}

→6(a−3)

→6a−18

\begin{gathered}\sf f(b-3)\\\to \sf 6(b-3)\\\to \sf 6b-18\end{gathered}

f(b−3)

→6(b−3)

→6b−18

\begin{gathered}\sf f(c-3)\\\to \sf f(2b-a-3)\\\to \sf 6(2b-a-3)\\\to \sf 12b-6a-18\end{gathered}

f(c−3)

→f(2b−a−3)

→6(2b−a−3)

→12b−6a−18

════════════════════════════════

Let's solve for a] ,

\implies \sf{\bf{f(a-3)+f(c-3)}}⟹f(a−3)+f(c−3)

\begin{gathered}\to \sf 6a-18+12b-6a-18\\\end{gathered}

→6a−18+12b−6a−18

\to \sf 12b-36→12b−36

\to \sf2(6b-18)→2(6b−18)

\to \sf 2[6(b-3)]→2[6(b−3)]

\leadsto \sf{\bf{2f(b-3)}}⇝2f(b−3)

Hence option a] is correct

________________________

Let's solve for b] ,

\begin{gathered}\implies \bf \dfrac{f(a-3)-f(b-3)}{f(b-3)-f(c-3)}\\\\\end{gathered}

f(b−3)−f(c−3)

f(a−3)−f(b−3)

\begin{gathered}\to \sf \dfrac{6a-18-(6b-18)}{6b-18-(12b-6a-18)}\\\\\end{gathered}

6b−18−(12b−6a−18)

6a−18−(6b−18)

\begin{gathered}\to \sf \dfrac{6a-6b}{6b-12b+6a}\\\\\end{gathered}

6b−12b+6a

6a−6b

\begin{gathered}\to \sf \dfrac{6a-6b}{6a-6b}\\\\\end{gathered}

6a−6b

6a−6b

\leadsto \bf\ \; 1⇝ 1

Hence option b] is correct

________________________

Let's solve for c] ,

\begin{gathered}\implies \bf \dfrac{f(a-3)-f(c-3)}{f(b-3)-f(a-3)}\\\\\end{gathered}

f(b−3)−f(a−3)

f(a−3)−f(c−3)

\begin{gathered}\to \sf \dfrac{6a-18-(12b-6a-18)}{6b-18-(6a-18)}\\\\\end{gathered}

6b−18−(6a−18)

6a−18−(12b−6a−18)

\begin{gathered}\to \sf \dfrac{12a-12b}{6b-6a}\\\\\end{gathered}

6b−6a

12a−12b

\begin{gathered}\to \sf \dfrac{-12(b-a)}{6(b-a)}\\\\\end{gathered}

6(b−a)

−12(b−a)

\leadsto \bf\ \; -2⇝ −2

Hence option c] is incorrect

________________________

Let's solve for d] ,

Note : Function [LHS and RHS] is in terms of a and c , so proceed through it

\implies \bf f(a-3)-f(c-3)⟹f(a−3)−f(c−3)

\to \sf 6a-18-(6c-18)→6a−18−(6c−18)

\to \sf 6a-6c→6a−6c

\leadsto \bf 6(a-c)⇝6(a−c)

Hence option d] is correct

________________________

Correct Options : a , b , d

Incorrect Options: c

Similar questions