If
then,
NOTE : This question has more than one Correct answer.
Answers
Answer:
Step-by-step explanation:
Given:
Note : Make sure that every function is in terms of a and b variables only except for exceptions.
════════════════════════════════
Let's solve for a,
Let's solve for b,
Let's solve for d,
Note : Function [LHS and RHS] is in terms of a and c , so proceed through it
________________________
Correct Options : a , b , d
════════════════════════════════
Answer:
Given :
\sf f(x)=6x\ ,\ b=\dfrac{a+c}{2}f(x)=6x , b=
2
a+c
\to \sf c=2b-a→c=2b−a
Note : Make sure that every function is in terms of a and b variables only except for exceptions
Explanation :
════════════════════════════════
\sf f(a-3)f(a−3)
f(x) = 6x
\begin{gathered}\to \sf 6(a-3)\\\to \sf 6a-18\end{gathered}
→6(a−3)
→6a−18
\begin{gathered}\sf f(b-3)\\\to \sf 6(b-3)\\\to \sf 6b-18\end{gathered}
f(b−3)
→6(b−3)
→6b−18
\begin{gathered}\sf f(c-3)\\\to \sf f(2b-a-3)\\\to \sf 6(2b-a-3)\\\to \sf 12b-6a-18\end{gathered}
f(c−3)
→f(2b−a−3)
→6(2b−a−3)
→12b−6a−18
════════════════════════════════
Let's solve for a] ,
\implies \sf{\bf{f(a-3)+f(c-3)}}⟹f(a−3)+f(c−3)
\begin{gathered}\to \sf 6a-18+12b-6a-18\\\end{gathered}
→6a−18+12b−6a−18
\to \sf 12b-36→12b−36
\to \sf2(6b-18)→2(6b−18)
\to \sf 2[6(b-3)]→2[6(b−3)]
\leadsto \sf{\bf{2f(b-3)}}⇝2f(b−3)
Hence option a] is correct
________________________
Let's solve for b] ,
\begin{gathered}\implies \bf \dfrac{f(a-3)-f(b-3)}{f(b-3)-f(c-3)}\\\\\end{gathered}
⟹
f(b−3)−f(c−3)
f(a−3)−f(b−3)
\begin{gathered}\to \sf \dfrac{6a-18-(6b-18)}{6b-18-(12b-6a-18)}\\\\\end{gathered}
→
6b−18−(12b−6a−18)
6a−18−(6b−18)
\begin{gathered}\to \sf \dfrac{6a-6b}{6b-12b+6a}\\\\\end{gathered}
→
6b−12b+6a
6a−6b
\begin{gathered}\to \sf \dfrac{6a-6b}{6a-6b}\\\\\end{gathered}
→
6a−6b
6a−6b
\leadsto \bf\ \; 1⇝ 1
Hence option b] is correct
________________________
Let's solve for c] ,
\begin{gathered}\implies \bf \dfrac{f(a-3)-f(c-3)}{f(b-3)-f(a-3)}\\\\\end{gathered}
⟹
f(b−3)−f(a−3)
f(a−3)−f(c−3)
\begin{gathered}\to \sf \dfrac{6a-18-(12b-6a-18)}{6b-18-(6a-18)}\\\\\end{gathered}
→
6b−18−(6a−18)
6a−18−(12b−6a−18)
\begin{gathered}\to \sf \dfrac{12a-12b}{6b-6a}\\\\\end{gathered}
→
6b−6a
12a−12b
\begin{gathered}\to \sf \dfrac{-12(b-a)}{6(b-a)}\\\\\end{gathered}
→
6(b−a)
−12(b−a)
\leadsto \bf\ \; -2⇝ −2
Hence option c] is incorrect
________________________
Let's solve for d] ,
Note : Function [LHS and RHS] is in terms of a and c , so proceed through it
\implies \bf f(a-3)-f(c-3)⟹f(a−3)−f(c−3)
\to \sf 6a-18-(6c-18)→6a−18−(6c−18)
\to \sf 6a-6c→6a−6c
\leadsto \bf 6(a-c)⇝6(a−c)
Hence option d] is correct
________________________
Correct Options : a , b , d
Incorrect Options: c