Math, asked by Mysterioushine, 7 months ago

If f( {\rm{x}})=\rm{6x} and b = \rm{\dfrac{a+c}{2}} then ,

a] f( {\rm{a - 3)}}  + f {\rm{(c - 3)}}=  2f {\rm{(b - 3)}}

b] \dfrac{ f{\rm{(a - 3)}} - f \rm{{(b - 3)}}}{f {\rm{(b - 3)}} -  f {\rm{(c - 3)}}} = 1

c] \dfrac{ f{\rm{(a - 3)}} - f \rm{{(c - 3)}}}{f {\rm{(b - 3)}} -  f {\rm{(a - 3)}}} = 2

d] f({\rm{a - 3)}} - f {\rm{(c - 3)}} = \rm 6(a - c)

NOTE : This question has more than one Correct answer.​

Answers

Answered by BrainlyIAS
78

Given :

\sf f(x)=6x\ ,\ b=\dfrac{a+c}{2}

\to \sf c=2b-a

Note : Make sure that every function is in terms of a and b variables only except for exceptions

Explanation :

════════════════════════════════

\sf f(a-3)

  • f(x) = 6x

\to \sf 6(a-3)\\\to \sf 6a-18

\sf f(b-3)\\\to \sf 6(b-3)\\\to \sf 6b-18

\sf f(c-3)\\\to \sf f(2b-a-3)\\\to \sf 6(2b-a-3)\\\to \sf 12b-6a-18

════════════════════════════════

  • Let's solve for a] ,

\implies \sf{\bf{f(a-3)+f(c-3)}}

\to \sf 6a-18+12b-6a-18\\

\to \sf 12b-36

\to \sf2(6b-18)

\to \sf 2[6(b-3)]

\leadsto \sf{\bf{2f(b-3)}}

Hence option a] is correct

________________________

  • Let's solve for b] ,

\implies \bf \dfrac{f(a-3)-f(b-3)}{f(b-3)-f(c-3)}\\\\

\to \sf \dfrac{6a-18-(6b-18)}{6b-18-(12b-6a-18)}\\\\

\to \sf \dfrac{6a-6b}{6b-12b+6a}\\\\

\to \sf \dfrac{6a-6b}{6a-6b}\\\\

\leadsto \bf\ \;  1

Hence option b] is correct

________________________

  • Let's solve for c] ,

\implies \bf \dfrac{f(a-3)-f(c-3)}{f(b-3)-f(a-3)}\\\\

\to \sf \dfrac{6a-18-(12b-6a-18)}{6b-18-(6a-18)}\\\\

\to \sf \dfrac{12a-12b}{6b-6a}\\\\

\to \sf \dfrac{-12(b-a)}{6(b-a)}\\\\

\leadsto \bf\ \;  -2

Hence option c] is incorrect

________________________

  • Let's solve for d] ,

Note : Function [LHS and RHS] is in terms of a  and c , so proceed through it

\implies  \bf  f(a-3)-f(c-3)

\to \sf 6a-18-(6c-18)

\to \sf 6a-6c

\leadsto \bf 6(a-c)

Hence option d] is correct

________________________

Correct Options : a , b , d

Incorrect Options: c

Answered by rocky200216
52
  •  \bf {f( {x})= {6x}}

  • And \bf{b\:=\:\dfrac{a+c}{2}}

c = 2b - a

__________________________

a]  \sf {f( {\rm{a - 3)}} + f {\rm{(c - 3)}}= 2f {\rm{(b - 3)}}} \\

L.H.S ;-

\huge{\color{aqua}\checkmark}  \bf \orange {f( {\rm{a - 3)}} + f {\rm{(c - 3)}}} \\

  • Given, f(x) = 6x

  • f (a - 3) = 6 (a - 3)

And

  • f (c - 3) = 6 (c - 3)

 \\ \bf{\implies\:6\:(a\:-\:3)\:+\:6\:(c\:-\:3)\:} \\

 \\ \bf{\implies\:6a\:-\:18\:+\:6c\:-\:18\:} \\

 \\ \bf{\implies\:6a\:+\:6c\:-\:36\:} \\

R.H.S ;-

 \bf \green {2f {\rm{(b - 3)}}} \\

\bf{\implies\:2\:\Big(\:f\:(b\:-\:3)\:\Big)\:} \\

  • Given, f(x) = 6x

  • f (b - 3) = 6 (b - 3)

 \\ \bf{\implies\:2\:\Big(\:6\:(b\:-\:3)\:\Big)\:} \\

 \\ \bf{\implies\:2\:\Big(\:6b\:-\:18\:\Big)\:} \\

 \\ \bf{\implies\:2\:\Big(\:6\times{\dfrac{a\:+\:c}{2}}\:-\:18\:\Big)\:} \\

 \\ \bf{\implies\:2\:\Big(\:3\times(a\:+\:c)\:-\:18\:\Big)\:} \\

 \\ \bf{\implies\:2\:\Big(\:3a\:+\:3c\:-\:18\:\Big)\:} \\

 \\ \bf{\implies\:6a\:+\:6c\:-\:36\:} \\

\huge\therefore L.H.S = R.H.S . Hence it is a correct option .

__________________________

b]  \sf {\dfrac{ f{\rm{(a - 3)}} - f \rm{{(b - 3)}}}{f {\rm{(b - 3)}} - f {\rm{(c - 3)}}} = 1} \\

L.H.S ;-

\huge{\color{aqua}\checkmark}  \bf \orange {\dfrac{ f {\rm{(a - 3)}} - f {\rm{(b - 3)}}}{f {\rm{(b - 3)}} - f {\rm{(c - 3)}}}} \\

 \\ \bf{\implies\:{\dfrac{6\:{(a\:-\:3)}\:-\:6\:{(b\:-\:3)}}{6\:{(b\:-\:3)}\:-\:6\:{(c\:-\:3)}}}\:} \\

 \\ \bf{\implies\:{\dfrac{6a\:-\:18\:-\:6b\:+\:18}{6b\:-\:18\:-\:6c\:+\:18}}\:} \\

 \\ \bf{\implies\:{\dfrac{6a\:-\:6b}{6b\:-\:6c}}\:} \\

 \\ \bf{\implies\:{\dfrac{6a\:-\:6b}{6b\:-\:6\:(2b\:-\:a)}}\:} \\

 \\ \bf{\implies\:{\dfrac{6a\:-\:6b}{6b\:-\:12b\:+\:6a}}\:} \\

 \\ \bf{\implies\:{\dfrac{6a\:-\:6b}{-\:6b\:+\:6a}}\:} \\

 \\ \bf{\implies\:{\dfrac{6a\:-\:6b}{6a\:-\:6b}}\:} \\

 \\ \bf{\implies\:1} \\

R.H.S ;-

\bf\green{1}

\huge\therefore L.H.S = R.H.S . Hence it is a correct option .

__________________________

c]  \sf {\dfrac{ f{\rm{(a - 3)}} - f \rm{{(c - 3)}}}{f {\rm{(b - 3)}} - f {\rm{(a - 3)}}} = 2} \\

L.H.S ;-

\huge{\color{aqua}\checkmark} \bf \orange {\dfrac{ f {\rm{(a - 3)}} - f {\rm{(c - 3)}}}{f {\rm{(b - 3)}} - f {\rm{(a - 3)}}}} \\

 \\ \bf{\implies\:{\dfrac{6\:{(a\:-\:3)}\:-\:6\:{(c\:-\:3)}}{6\:{(b\:-\:3)}\:-\:6\:{(a\:-\:3)}}}\:} \\

 \\ \bf{\implies\:{\dfrac{6a\:-\:18\:-\:6c\:+\:18}{6b\:-\:18\:-\:6a\:+\:18}}\:} \\

 \\ \bf{\implies\:{\dfrac{6a\:-\:6c}{6b\:-\:6a}}\:} \\

 \\ \bf{\implies\:{\dfrac{6a\:-\:6\:(2b\:-\:a)}{6b\:-\:6a}}\:} \\

 \\ \bf{\implies\:{\dfrac{6a\:-\:12b\:+\:6a}{6b\:-\:6a}}\:} \\

 \\ \bf{\implies\:{\dfrac{12a\:-\:12b}{6b\:-\:6a}}\:} \\

 \\ \bf{\implies\:{\dfrac{12\:(a\:-\:b)}{6\:(b\:-\:a)}}\:} \\

 \\ \bf{\implies\:{\dfrac{2\:(a\:-\:b)}{b\:-\:a}}\:} \\

 \\ \bf{\implies\:{\dfrac{-\:2\:(b\:-\:a)}{b\:-\:a}}\:} \\

 \\ \bf{\implies\:-\:2\:} \\

R.H.S ;-

\bf\green{2}

\huge\therefore L.H.S ≠ R.H.S . Hence it is a incorrect option .

__________________________

d]  \sf {f({\rm{a - 3)}} - f {\rm{(c - 3)}} = \rm 6(a - c)} \\

L.H.S ;-

\huge{\color{aqua}\checkmark} \bf \orange {f {(a - 3)} - f {(c - 3)}} \\

 \\ \bf{\implies\:6\:(a\:-\:3)\:-\:6\:(c\:-\:3)\:} \\

 \\ \bf{\implies\:6a\:-\:18\:-\:6c\:+\:18\:} \\

 \\ \bf{\implies\:6a\:-\:6c\:} \\

R.H.S ;-

 \bf \green {6 {(a - c)}} \\

\bf{\implies\:6a\:-\:6c\:} \\

\huge\therefore L.H.S = R.H.S . Hence it is a correct option .

__________________________

\huge\red\therefore The correct options are (a) , (b) & (d).

Similar questions