Math, asked by SHZ123, 1 month ago

If
f(x) =  \frac{1}{2} ( {3}^{x}  +  {3}^{ - x} )and   \\ g(x) =  \frac{1}{2} ( {3}^{x}  -  {3}^{ - x} ) then \: prove \: that \: f(x + y) = f(x)f(y) + g(x)g(y).
Please don't spam ​

Answers

Answered by TrustedAnswerer19
20

Answer:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\

\pink{ \boxed{ \boxed{ \begin{array}{cc} \leadsto \bf \: Given \:  :   \\  \\  \rm \to \: f(x) =  \frac{1}{2} ( {3}^{x}   +  {3}^{ - x}) \\  \\  \rm \to \: g(x) =  \frac{1}{2} ( {3}^{x}   -  {3}^{ - x})  \\  \\  \\  \blue{ \underline{ \sf \: we \: have \: to \: prove \:  :}} \\  \\  \bigstar \:  \rm \:f(x + y) = f(x)f(y) + g(x)g(y) \end{array}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \underline{ \red{ \bf \: Solution \:: }}

 \orange{ \boxed{ \boxed{ \begin{array}{cc}  L.H.S\:  =  \rm \: f(x + y)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \:  \:   =  \rm\:\frac{1}{2}( {3}^{x + y}  +  {3}^{ - x - y} )  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \end{array}}}}

{ \boxed{ \boxed{ \begin{array}{cc} R.H.S\:  =  \rm \: f(x)f(y) + g(x) g(y)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  =  \small{  \rm\frac{1}{2} ( {3}^{x}   +  {3}^{ - x}) \frac{1}{2} ( {3}^{y} +  {3}^{ - y}  ) +  \frac{1}{2} ( {3}^{x}  -  {3}^{ - x} ) \frac{1}{2} ( {3}^{y}  -  {3}^{ - y}  )} \\  \\  \small{ \rm =  \frac{1}{4} ( {3}^{x + y}  +  \cancel{ {3}^{x - y}} + \cancel{ {3}^{ - x + y}} +  {3}^{ - x - y}   +  {3}^{x + y} -  \cancel{{3}^{x - y} }- \cancel{ {3}^{ - x  + y}  }  +  {3}^{ - x - y} )} \\  \\  \rm =  \frac{1}{4}  \times 2( {3}^{x + y}  +  {3}^{ - x - y} ) \\  \\  \rm =  \frac{1}{2} ( {3}^{x + y}  +  {3}^{ - x - y} ) \\  \\  = L.H.S \end{array}}}}

Hence proved.

Assalamu A'laikum,

kemon acho?

[ hope u're fine, as u always say :) ... and I'm also fine ]

onek din kono kotha hoy ni. most of time, tomar question a jokhon visit kori tokhon kono space paina.

However,

hope your study is also going well...

good luck ... d(✪‿✪)

Similar questions