Math, asked by aryan021212, 5 days ago

if

f(x) = g( {x}^{3}) + x.h( {x}^{3}) \: is \: divisible \: by \:  {x}^{2}  + x + 1


then show that g(x) and h(x) are divisible by x - 1.​

Answers

Answered by mathdude500
43

\large\underline{\sf{Solution-}}

Given that

\rm \: f(x) = g( {x}^{3}) + x.h( {x}^{3}) \: is \: divisible \: by \:  {x}^{2} + x + 1

Now, Consider

\rm \:  {x}^{2} + x + 1 = 0

Its a quadratic equation, so to find the solution, we use Quadratic Formula.

Thus,

\rm \: x = \dfrac{ - 1 \:  \pm \:  \sqrt{ {1}^{2}  - 4 \times 1 \times 1} }{2 \times 1}

\rm \: x = \dfrac{ - 1 \:  \pm \:  \sqrt{ 1 - 4} }{2}

\rm \: x = \dfrac{ - 1 \:  \pm \:  \sqrt{- 3} }{2}

\rm \: x = \dfrac{ - 1 \:  \pm \: i \sqrt{3} }{2}

\rm\implies \:\rm \: x = \dfrac{ - 1 \:   +  \: i \sqrt{3} }{2}  \:  \: or \:  \: \dfrac{ - 1 \: - \: i \sqrt{3} }{2}

\rm\implies \:\rm \: x = \omega  \:  \: or \:  \:  {\omega}^{2}

where,

\omega = \dfrac{ - 1 \:   +  \: i \sqrt{3} }{2}

and

\rm \:  {\omega}^{2} = \dfrac{ - 1 \: -  \: i \sqrt{3} }{2}

So, it means

\rm \: f(x) = g( {x}^{3}) + x.h( {x}^{3}) \: is \: divisible \: by \:  (x - \omega) \: and \:  {(x - \omega}^{2})

Now, We know

Factor Theorem :- Factor theorem states that if a polynomial f(x) is divisible by x - a, then f(a) = 0.

So, using this Factor theorem, we have

\rm \: f(\omega) = 0 \:  \: and \:  \: f( {\omega}^{2}) = 0

So,

\rm\implies \:g( {\omega}^{3}) + \omega.h( {\omega}^{3}) = 0

We know

\boxed{\tt{  \:  \:  {\omega}^{3} \:  =  \: 1 \:  \: }} \\

So, using this, we get

\rm\implies \:g(1) + \omega.h(1) = 0 -  -  - (1)

Also,

\rm \: f( {\omega}^{2}) = 0

\rm\implies \:g( {\omega}^{6}) +  {\omega}^{2} .h( {\omega}^{6}) = 0

We know,

\boxed{\tt{  \:  \:  {\omega}^{6} \:  =  {( {\omega}^{3}) }^{2}  =  \: 1 \:  \: }} \\

So, using this, we get

\rm\implies \:g(1) +  {\omega}^{2} .h(1) = 0 -  -  -  - (2)

On Subtracting equation (2) from equation (1), we get

\rm\implies \:\rm \: h(1)[\omega -  {\omega}^{2}] = 0

As

\rm \: \omega -  {\omega}^{2} \:  \ne \: 0

\rm\implies \:h(1) = 0 -  -  - (3)

On substituting h(1) = 0 in equation (1), we get

\rm\implies \:g(1) = 0 -  -  - (4)

\rm\implies \:g(1) = h(1) = 0

So, By Factor Theorem,

\rm\implies \:g(x)  \: and \: h(x) \: both \: are \: divisible \: by \: x - 1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

SHORT CUT TRICK TO FIND ARGUMENT OF COMPLEX NUMBER

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Similar questions