Math, asked by SHZ123, 20 days ago

If
f(x) =  ln(sinx) \: and \: g(x) =  ln( cosx)  \: then \: prove \: that \: {e}^{2g(a)}  -  {e}^{2f(a)}  =   {e}^{g(2a)}

Answers

Answered by TrustedAnswerer19
10

Answer:

Given,

 \:  \:  \:  \sf \: f(x) = ln \: (sin \: x) \\  \sf \therefore \: f(a) = ln \: (sin \: a)  \\  \bf \: and \:  \\  \:  \:  \:  \sf \: g(x) = ln \: (cos \: x) \\ \sf \therefore \:g(a) = ln \: (cos \: a) \\ \sf \therefore \:g(2a) = ln \: (cos \: 2a) \\  \\  \bf \: now \\  L.H.S  \sf \: =  {e}^{2g(a)}  -  {e}^{2f(a)}  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =  {e}^{2 \: ln \: (cos \: a)}  -  {e}^{2 \: ln \: (sin \: a)}  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  {e}^{ln \: ( {cos}^{2}  \: a)}  -  {e}^{ln \:( {sin}^{2}   \: a)}  \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  {cos}^{2}  \: a -  {sin}^{2}  \: a \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = cos \: 2a \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    = {e}^{ln \: (cos \: 2a)}  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  {e}^{g(2a)}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = R.H.S \\  \\ \green{ \large {( \sf \: hence \: proved)}}

Note :

  \bf \: =  >  a \: ln \: x = ln \:  {x}^{a} \\  \\  \bf \:  =  >  \: ln \: e = 1 \\  \\  \bf \:  =  >  {e}^{ln \: x}  \:  = x \: ln \: e = x \times 1 = x \\  \\  \sf \:  =  >  {cos}^{2}  \theta -  {sin}^{2}  \theta = cos \: 2 \theta

 \\  \\  \\

______________________________________________

Hi , ヽ(•‿•)ノ

Good morning.

Hope, you are fine by the grace of Allah.

And you are studying very well. d(✪‿✪)

__

Alhamdulillah, I am also fine.

Similar questions