Math, asked by Anonymous, 20 days ago


If  f(x) = \prod\limits_{n=1}^{100}(x-n)^{n(101-n)} then find  \dfrac{f(101)}{f'(101)}.​

Answers

Answered by mathdude500
22

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = \prod\limits_{n=1}^{100}(x-n)^{n(101-n)} \\

On taking log on both sides, we get

\rm \:log f(x) =log\bigg( \prod\limits_{n=1}^{100}(x-n)^{n(101-n)}\bigg) \\

\rm \:log f(x) =log\bigg((x-1)^{1(101-1)}(x-2)^{2(101-2)} -  - (x-100)^{100(101-100)}\bigg) \\

\rm \:log f(x) =log(x-1)^{1(101-1)} + log(x-2)^{2(101-2)}  + -  -  + log(x-100)^{100(101-100)} \\

can be further rewritten as

\rm \: logf(x) = \sum\limits_{n=1}^{100}log\bigg((x-n)^{n(101-n)}\bigg) \\

\rm \: logf(x) = \sum\limits_{n=1}^{100}n(101 - n)log(x-n) \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx} logf(x) =\dfrac{d}{dx} \sum\limits_{n=1}^{100}n(101 - n)log(x-n) \\

\rm \: \dfrac{f'(x)}{f(x)} = \sum\limits_{n=1}^{100}n(101 - n)\dfrac{d}{dx}log(x-n) \\

\rm \: \dfrac{f'(x)}{f(x)} = \sum\limits_{n=1}^{100}n(101 - n) \times \dfrac{1}{x - n} \\

On substituting x = 101, we get

\rm \: \dfrac{f'(101)}{f(101)} = \sum\limits_{n=1}^{100}n(101 - n) \times \dfrac{1}{101 - n} \\

\rm \: \dfrac{f'(101)}{f(101)} = \sum\limits_{n=1}^{100}n \\

\rm \: \dfrac{f'(101)}{f(101)} = \dfrac{100(100 + 1)}{2}  \\

\rm \: \dfrac{f'(101)}{f(101)} = \dfrac{100(101)}{2}  \\

\rm \: \dfrac{f'(101)}{f(101)} = 101 \times 50  \\

\rm \: \dfrac{f'(101)}{f(101)} = 5050  \\

\rm\implies \:\rm \: \dfrac{f(101)}{f'(101)} =  \dfrac{1}{5050}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae Used :-

\boxed{\sf{  \:\rm \: log {x}^{y} = ylogx \:  \: }} \\

\boxed{\sf{  \:\rm \: log(xy) = logx + logy \:  \: }} \\

\boxed{\sf{  \:\rm \: \dfrac{d}{dx}logx =  \frac{1}{x} \: \:  }} \\

\boxed{\sf{  \:\rm \: \sum\limits_{k=1}^{n} \: k \:  =  \:  \frac{n(n + 1)}{2}  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:\rm \: \sum\limits_{k=1}^{n} \:  {k}^{2}  \:  =  \:  \frac{n(n + 1)(2n + 1)}{6}  \:  \: }} \\

\boxed{\sf{  \:\rm \: \sum\limits_{k=1}^{n} \:  {k}^{3}  \:  =  \:  \bigg(\frac{n(n + 1)}{2}\bigg)^{2}   \:  \: }} \\

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}


amansharma264: Excellent
Similar questions