Math, asked by madhav5245, 7 hours ago

If
f(x) =   \sqrt{1 - sin2x}  \: find \:  \frac{dy}{dx}  \: at \: x =  \frac{\pi}{3}
Differentiate and solve at indicated point​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  \sqrt{1 - sin2x}

can be rewritten as

\rm :\longmapsto\:y =  \sqrt{ {sin}^{2}x +  {cos}^{2}x  -2sinxcosx}

can be further rewritten as

\rm :\longmapsto\:y =  \sqrt{ {(sinx - cosx)}^{2} }

We know,

 \red{\rm :\longmapsto\: \:  \:  \: \boxed{\tt{ \:  \:  \:  \: \sqrt{ {x}^{2} } =  |x| \:  \:  \:  \: }}}

So, using this identity, we have

\rm :\longmapsto\:y =  |sinx - cosx|

We know,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x| =  \begin{cases} &\sf{ - x \:  \: when \: x < 0} \\ &\sf{ \:  \:  0 \:  \: when \: x  = 0}\\ &\sf{ \:  \: x \:  \: when \: x > 0} \end{cases}\end{gathered}\end{gathered}

So, using this, we get

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |sinx - cosx| =  \begin{cases} &\sf{ -(sinx - cosx) \:  \: when \: x <  \dfrac{\pi}{4} } \\  \\ &\sf{ \:  \:  0 \:  \: when \: x  = \dfrac{\pi}{4}}\\ \\  &\sf{ \:  \: sinx - cosx \:  \: when \: x > \dfrac{\pi}{4}} \end{cases}\end{gathered}\end{gathered}

So,

\rm\implies \:When \: x \:  =  \: \dfrac{\pi}{3}

then

\rm :\longmapsto\:y = sinx - cosx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}(sinx - cosx)

\rm :\longmapsto\:\dfrac{dy}{dx} = cosx - ( - sinx)

\rm :\longmapsto\:\dfrac{dy}{dx} = cosx  + sinx

Thus,

\rm :\longmapsto\:\dfrac{dy}{dx}_{at \: x \:  =  \: \dfrac{\pi}{3}} = cos\dfrac{\pi}{3}  + sin\dfrac{\pi}{3}

\rm :\longmapsto\:\dfrac{dy}{dx}_{at \: x \:  =  \: \dfrac{\pi}{3}} = \dfrac{ \sqrt{3} }{2}  + \dfrac{1}{2}

\rm\implies \: \: \boxed{\tt{ \dfrac{dy}{dx}_{ \:  \: at \: x \:  =  \: \dfrac{\pi}{3}}  \: = \:  \dfrac{ \sqrt{3}  + 1}{2} \:  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by EmperorSoul
0

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  \sqrt{1 - sin2x}

can be rewritten as

\rm :\longmapsto\:y =  \sqrt{ {sin}^{2}x +  {cos}^{2}x  -2sinxcosx}

can be further rewritten as

\rm :\longmapsto\:y =  \sqrt{ {(sinx - cosx)}^{2} }

We know,

 \red{\rm :\longmapsto\: \:  \:  \: \boxed{\tt{ \:  \:  \:  \: \sqrt{ {x}^{2} } =  |x| \:  \:  \:  \: }}}

So, using this identity, we have

\rm :\longmapsto\:y =  |sinx - cosx|

We know,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x| =  \begin{cases} &\sf{ - x \:  \: when \: x < 0} \\ &\sf{ \:  \:  0 \:  \: when \: x  = 0}\\ &\sf{ \:  \: x \:  \: when \: x > 0} \end{cases}\end{gathered}\end{gathered}

So, using this, we get

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |sinx - cosx| =  \begin{cases} &\sf{ -(sinx - cosx) \:  \: when \: x <  \dfrac{\pi}{4} } \\  \\ &\sf{ \:  \:  0 \:  \: when \: x  = \dfrac{\pi}{4}}\\ \\  &\sf{ \:  \: sinx - cosx \:  \: when \: x > \dfrac{\pi}{4}} \end{cases}\end{gathered}\end{gathered}

So,

\rm\implies \:When \: x \:  =  \: \dfrac{\pi}{3}

then

\rm :\longmapsto\:y = sinx - cosx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}(sinx - cosx)

\rm :\longmapsto\:\dfrac{dy}{dx} = cosx - ( - sinx)

\rm :\longmapsto\:\dfrac{dy}{dx} = cosx  + sinx

Thus,

\rm :\longmapsto\:\dfrac{dy}{dx}_{at \: x \:  =  \: \dfrac{\pi}{3}} = cos\dfrac{\pi}{3}  + sin\dfrac{\pi}{3}

\rm :\longmapsto\:\dfrac{dy}{dx}_{at \: x \:  =  \: \dfrac{\pi}{3}} = \dfrac{ \sqrt{3} }{2}  + \dfrac{1}{2}

\rm\implies \: \: \boxed{\tt{ \dfrac{dy}{dx}_{ \:  \: at \: x \:  =  \: \dfrac{\pi}{3}}  \: = \:  \dfrac{ \sqrt{3}  + 1}{2} \:  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions