Math, asked by aarayab49, 10 months ago

if f(x)= x - \frac{1}{x} , then find the value of f(f(\frac{1}{x})). kindly help, relations and functions class 11

Answers

Answered by CaptainRisk
0

Answer:

f(f( \frac{1}{x} )) =  \frac{ {x}^{4} - 3 {x}^{2}  + 1 }{x(1 -  {x}^{2} )}

Step-by-step explanation:

f(f( \frac{1}{x} )) = f( \frac{1}{x}  -  \frac{1}{ \frac{1}{x} } )

 f(f( \frac{1}{x})) =f( \frac{1}{x}  - x)

 f(f( \frac{1}{x})) =f( \frac{1 -  {x}^{2} }{x} )

 f(f( \frac{1}{x})) = \frac{1 -  {x}^{2} }{x}  -  \frac{x}{1 -  {x}^{2} }

 f(f( \frac{1}{x})) = \frac{ {(1 -  {x}^{2} )}^{2}  -  {x}^{2} }{x(1 -  {x}^{2} )}

 f(f( \frac{1}{x})) = \frac{1  +  {x}^{4} - 2 {x}^{2} -  {x}^{2}   }{x(1 -  {x}^{2} )}

 f(f( \frac{1}{x})) = \frac{ {x}^{4} - 3 {x}^{2} + 1  }{x(1 -  {x}^{2} )}

Hope it helps you. If still you have any query about relations and functions or anything in mathematics, feel free to ask me.

Similar questions