Math, asked by papafairy143, 9 hours ago

If

 \frac{1}{ {1}^{4} }  +  \frac{1}{ {2}^{4} }  +  \frac{1}{ {3}^{4} }  +  -  -  -  \infty  =  \frac{ {\pi}^{4} }{90}

then find the value of

 \frac{1}{ {1}^{4} }  +  \frac{1}{ {3}^{4} }  +  \frac{1}{ {5}^{4} }  +  -  -  -  \infty

Answers

Answered by mathdude500
27

 \red{\large\underline{\sf{Given- }}}

\rm \: \dfrac{1}{ {1}^{4} }   +\dfrac{1}{ {2}^{4} } + \dfrac{1}{ {3}^{4} }  + \dfrac{1}{ {4}^{4} } + \dfrac{1}{ {5}^{4} } +  -  -  -  \infty  = \dfrac{ {\pi}^{4} }{90}

 \purple{\large\underline{\sf{To\:Find - }}}

\rm \: \dfrac{1}{ {1}^{4} } + \dfrac{1}{ {3}^{4} } + \dfrac{1}{ {5}^{4} } +  -  -  -  \infty

 \green{\large\underline{\sf{Solution-}}}

Given series is

\rm \: \dfrac{1}{ {1}^{4} }   +\dfrac{1}{ {2}^{4} } + \dfrac{1}{ {3}^{4} }  + \dfrac{1}{ {4}^{4} } + \dfrac{1}{ {5}^{4} } +  -  -  -  \infty  = \dfrac{ {\pi}^{4} }{90}

can also be re-arranged as

\rm \:\bigg[ \dfrac{1}{ {1}^{4} }   +\dfrac{1}{ {3}^{4} } + \dfrac{1}{ {5}^{4} } +  -  -  \infty \bigg]  +\bigg[ \dfrac{1}{ {2}^{4} } + \dfrac{1}{ {4}^{4} } +  -  -  -  \infty\bigg]  = \dfrac{ {\pi}^{4} }{90}

\rm \:\bigg[ \dfrac{1}{ {1}^{4} }   +\dfrac{1}{ {3}^{4} } + \dfrac{1}{ {5}^{4} } +  -  -  \infty \bigg]  +\bigg[ \dfrac{1}{ {(2.1)}^{4} } + \dfrac{1}{ {(2.2)}^{4} } +  -  -  -  \infty\bigg]  = \dfrac{ {\pi}^{4} }{90}

\rm \:\bigg[ \dfrac{1}{ {1}^{4} }   +\dfrac{1}{ {3}^{4} } + \dfrac{1}{ {5}^{4} } +  -  -  \infty \bigg]  +\bigg[ \dfrac{1}{ {1}^{4}{2}^{4} } + \dfrac{1}{  {2}^{4} {2}^{4} } +  -  -  -  \infty\bigg]  = \dfrac{ {\pi}^{4} }{90}

\rm \:\bigg[ \dfrac{1}{ {1}^{4} }   +\dfrac{1}{ {3}^{4} } + \dfrac{1}{ {5}^{4} } +  -  -  \infty \bigg]  +\dfrac{1}{ {2}^{4} } \bigg[ \dfrac{1}{{1}^{4} } + \dfrac{1}{{2}^{4} } +  -  -  -  \infty\bigg]  = \dfrac{ {\pi}^{4} }{90}

Using given series, we get

\rm \:\dfrac{1}{ {1}^{4} }   +\dfrac{1}{ {3}^{4} } + \dfrac{1}{ {5}^{4} } +  -  -  \infty  +\dfrac{1}{ {2}^{4} } \times \dfrac{ {\pi}^{4} }{90}= \dfrac{ {\pi}^{4} }{90}

\rm \:\dfrac{1}{ {1}^{4} }   +\dfrac{1}{ {3}^{4} } + \dfrac{1}{ {5}^{4} } +  -  -  \infty= \dfrac{ {\pi}^{4} }{90} - \dfrac{1}{ {2}^{4} } \times \dfrac{ {\pi}^{4} }{90}

\rm \:\dfrac{1}{ {1}^{4} }   +\dfrac{1}{ {3}^{4} } + \dfrac{1}{ {5}^{4} } +  -  -  \infty= \dfrac{ {\pi}^{4} }{90} \bigg[1- \dfrac{1}{ {2}^{4} }\bigg]

\rm \:\dfrac{1}{ {1}^{4} }   +\dfrac{1}{ {3}^{4} } + \dfrac{1}{ {5}^{4} } +  -  -  \infty= \dfrac{ {\pi}^{4} }{90} \bigg[1- \dfrac{1}{16}\bigg]

\rm \:\dfrac{1}{ {1}^{4} }   +\dfrac{1}{ {3}^{4} } + \dfrac{1}{ {5}^{4} } +  -  -  \infty= \dfrac{ {\pi}^{4} }{90} \bigg[ \dfrac{16 - 1}{16}\bigg]

\rm \:\dfrac{1}{ {1}^{4} }   +\dfrac{1}{ {3}^{4} } + \dfrac{1}{ {5}^{4} } +  -  -  \infty= \dfrac{ {\pi}^{4} }{90} \bigg[ \dfrac{15}{16}\bigg]

\rm\implies \:\boxed{\tt{ \rm \:\dfrac{1}{ {1}^{4} }   +\dfrac{1}{ {3}^{4} } + \dfrac{1}{ {5}^{4} } +  -  -  \infty= \dfrac{ {\pi}^{4} }{96}  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{ \rm \: 1 + 2 + 3 +  -  -  -  + n =  \frac{n(n + 1)}{2}}} \\

\boxed{\tt{ \rm \:  {1}^{2}  +  {2}^{2} +  {3}^{2} +  -  -  +  {n}^{2}    =  \frac{n(n + 1)(2n + 1)}{6}}} \\

\boxed{\tt{ \rm \:  {1}^{3}  +  {2}^{3} +  {3}^{3} +  -  -  +  {n}^{3}    =  \bigg[\frac{n(n + 1)}{2}\bigg]^{2} }} \\

Answered by Dalfon
325

Answer:

π⁴/96

Step-by-step explanation:

Given that 1/1⁴ + 1/2⁴ + 1/3⁴ + - - - - ∞ = π⁴/90

We need to find out 1⁴ + 1/3⁴ + 1/5⁴ + - - - - ∞

Let's say 1/1⁴ + 1/3⁴ + 1/5⁴ + - - - - - ∞ = A

Now,

1/1⁴ + 1/2⁴ + 1/3⁴ + - - - - ∞ = π⁴/90

(1/1⁴ + 1/3⁴ + 1/5⁴ + - - - - ) + (1/2⁴ + 1/4⁴ + 1/6⁴ + - - - -) = π⁴/90

Take 1/2⁴ as common,

A + 1/2⁴ (1/1⁴ + 1/2⁴ + 1/3⁴ + - - - - - ∞) = π⁴/90

A + 1/16 × π⁴/90 = π⁴/90

A = π⁴/90 - 1/16 × π⁴/90

Take π⁴/90 as common,

A = π⁴/90 × (1 - 1/16)

A = π⁴/90 × [(16 - 1)/16]

A = π⁴/90 × 15/16

A = π⁴/96

Hence, the required answer is π⁴/96

Similar questions