Math, asked by Chugui853, 1 year ago

if ( \frac{1 - i}{1 + i} ) {}^{36} = A + iB then find the value of A and B

Answers

Answered by Swarnimkumar22
10
\bold{\huge{Hay!!}}


\bold{Dear\:user!!}



\bold{\underline{Question-}}

if ( \frac{1 - i}{1 + i} ) {}^{36} = A + iB then find the value of A and B


\bold{\underline{Answer-}}


\bold{Your\:answer\:is\:\:(A = 1 , B = 0)}


\bold{\underline{Explanation-}}

( \frac{1 - i}{1 + i} ) {}^{36}  = A + iB \:  \\


[ \frac{(1 - i)(1 - i)}{(1 + i)(1 - i)} ] {}^{36}  = A + iB \\  \\  \\  \\ [ \frac{1 +  {i}^{2} - 2i }{1 -  {i}^{2} } ] {}^{36}  = A + iB \\  \\  \\  \\ [ \frac{ - 2i}{1 + 1} ] {}^{36}  = A + iB \\  \\  \\  \\ [ - i] {}^{36}  = A + iB \\  \\  \\  \\ [ {( - i)}^{2} ] {}^{18}  = A + iB \\  \\  \\  \\ [1] {}^{18}  = A + iB \\  \\  \\  \\ 1 + 0i {}^{18}   = A + iB \\  \\  \\  \\ A  = 1 \:  \:  \:  \:  \:  \:  \:  \:  \: . \:  \:  \:  \:  \:  \:  \:  \:  \:  B = 0


Answered by Anonymous
1

Answer:

Step-by-step explanation:

A = 1 AND B= 0

Similar questions