Math, asked by abhibhat10199, 1 month ago

If \frac{1-tanx}{1+tany} = tany and x-y=pi/4 what is x?
a) (1-2n)\frac{\pi}{4}
b) (1+2n)\frac{\pi}{4}
c) (2n-1)\frac{\pi}{3}
d) (2n+1)\frac{\pi}{6}

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find =  \\ value \: of \: x \\  \\ so \: here \:  \\ x - y =  \frac{\pi}{4}  \\  \\ ie \:  \: x - y = 45 \\ so \:  \: x = y + 45 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (1)

here \\  \frac{1 - tan.x}{1 + tan.y}  = tan.y \\  \\ 1 - tan.x = tan.y \: (1 + tan.y) \\ 1 - tan.x = tan.y + tan {}^{2} .y \\  \\ 1 - tan \: (y + 45) = tan.y + tan {}^{2} .y \\ so \: here \: tan \: (y + 45) \: is \: in \: form \: tan \: (A+B) \\  \\ so \: we \: know \: that \\ tan \: (A+B) =  \frac{tan.A + tan.B}{1 - tan \:A.tan \:  B }  \\  \\ hence \: accordingly \\  = 1 -  \frac{tan.45 + tan \: y}{1 - tan.45.tan.y}  \\  \\  = 1 -  \frac{1 + tan.y}{1 - 1 \times tan.y}  \\ \\  since \: tan \: 45 = 1 \\  \\  = 1 -  \frac{1 + tan.y}{1 - tan.y}  \\  \\  =  \frac{1 - tan.y - (1 + tan.y)}{1 - tan.y}  \\  \\  =  \frac{1 - tan.y - 1 - tan.y}{1 - tan.y}  \\  \\  =  \frac{ - 2.tan \: y}{1 - tan \: y}  \\  \\ ie  \: \: tan \: y \: (1 + tan \: y) =  \frac{ - 2 \: tan.y}{1 - tan \: y}  \\  \\  = 1 + tan.y =  \frac{ - 2}{(1 - tan \: y)}  \\  \\ (1 + tan \: y)(1 - tan \: y) =  - 2 \\ 1 - tan {}^{2} y =  - 2 \:  \\ ie \:  \: tan {}^{2} y = 3

taking \: square \: roots \: on \: both \: sides \\ we \: get \\ tan \: y =  \sqrt{3}  \\ so \: we \: know \: that \\ tan \: 60 \: \:  ie \:  \: tan \:  \frac{\pi}{3}  =  \sqrt{3}  \\  \\ ie \: y =  \frac{\pi}{3}  \\  \\  \: or \:  \: y = 60

substitute \: value \: of \: y \: in \: (1) \\ we \: get \\ x = 105 \\ \\  ie \:  \: x =  -\frac{7.\pi}{12}

Similar questions