Math, asked by dakshchathi, 9 months ago

if
 \frac{1}{x   + 2}    + \frac{1}{x + 3}  +  \frac{1}{x + 5}
are in AP then x =???​

Answers

Answered by Anonymous
145

\huge\underline\mathrm{Answer-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\boxed{\red{\rm{x\:=\:1}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\huge\underline\mathrm{Explanation-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\dfrac{1}{x + 2} + \dfrac{1}{x + 3} + \dfrac{1}{x + 5}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

It is given that this is in AP, so the common difference must be equal.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\therefore \sf{\dfrac{1}{x+3}\:-\:\dfrac{1}{x+2}\:=\:\dfrac{1}{x+5}\:-\:\dfrac{1}{x+3}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies \sf{\dfrac{(x+2)-(x+3)}{(\cancel{x+3})(x+2)}\:=\:\dfrac{(x+3)-(x+5)}{(x+5)(\cancel{x+3})}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies \sf{-1(x+5)\:=\:-2(x+2)}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies \sf{-x+5\:=\:-2x-4}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies \sf{-x+2x\:=\:-4+5}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\boxed{\red{\rm{x\:=\:1}}}}

Answered by Equestriadash
104

\bf Given:\ \tt \dfrac{1}{x\ +\ 2}\ +\ \dfrac{1}{x\ +\ 3}\ +\ \dfrac{1}{x\ +\ 5}\ are\ in\ AP.\\\\\\\bf To\ find:\ \tt The\ value\ of\ x.\\\\\\\bf Answer:\\\\\tt Suppose\ a,\ a_2\ and\ a_3\ are\ in\ AP.\ Then,\\\\\\\bf a_2\ -\ a\ =\ a_3\ -\ a_2\\\\\\\bf From\ the\ data\ we\ have,\\\\\\\tt a\ =\ \dfrac{1}{x\ +\ 2}\\\\\\a_2\ =\ \dfrac{1}{x\ +\ 3}\\\\\\a_3\ =\ \dfrac{1}{x\ +\ 5}\\\\\\\implies\ \dfrac{1}{x\ +\ 3}\ -\ \dfrac{1}{x\ +\ 2}\ =\ \dfrac{1}{x\ +\ 5}\ -\ \dfrac{1}{x\ +\ 3}\\\\

\tt \dfrac{(x\ +\ 2)\ -\ (x\ -\ 3)}{(x\ +\ 3)(x\ +\ 2)}\ =\ \dfrac{(x\ +\ 3)\ -\ (x\ +\ 5)}{(x\ +\ 5)(x\ +\ 3}\\\\\\\\\dfrac{-1}{(x\ +\ 3)(x\ +\ 2)}\ =\ \dfrac{-2}{(x\ +\ 5)(x\ +\ 3)}\\\\\\\\-1(x\ +\ 5)(x\ +\ 3)\ =\ -2(x\ +\ 3)(x\ +\ 2)\\\\\\-1(x\ +\ 5)\ =\ -2(x\ +\ 2)\\\\\\-x\ -\ 5\ =\ -2x\ -\ 4\\\\\\-5\ +\ 4\ =\ -2x\ +\ x\\\\\\-1\ =\ -x\\\\\\\bf x\ =\ 1


Equestriadash: Thanks for the Brainliest! ♥
Similar questions