Math, asked by masiJee, 5 months ago

if
 \frac{1}{x } = 3 -   \sqrt{2}
then find the value of
x -  \frac{1}{x}
and
x +  \frac{1}{x}

Answers

Answered by mariumsiddiq98
1

Step-by-step explanation:

if \:  \frac{1}{x } = 3 - \sqrt{2}  \\ then \: x =  \frac{1}{3 -  \sqrt{2} }

to \: find \: x -  \frac{1}{x} \\ by \: appling \: formula \:  \\ \: (a - b {)}^{2} =   {a}^{2}  - 2ab \:  +  {b}^{2}  \\ where \: a \:  = x \: and \: b =  \frac{1}{x}

(x -  \frac{1}{x}  {)}^{2}  =  {x}^{2}  - 2xy +  { \frac{1}{x} }^{2}  \\ (x -  \frac{1}{x}  {)}^{2}  = (\frac{1}{3 -  \sqrt{2} }  {)}^{2}  - 2( \frac{1}{3 -  \sqrt{2} } )(3 -  \sqrt{2} ) + (3 -   \sqrt{2}  {)}^{2}

Similar questions