Math, asked by Anonymous, 2 months ago

if \frac{2+√3}{2-√3} =a+b√3 then find the values of a and b​

Answers

Answered by Anonymous
2

Answer:

4-3=a+b√3

1=a+b√3

on compairing

a=1

b=o

Step-by-step explanation:

are the answers of this question

Answered by twinkle385
5

Answer:

 \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  = a + b \sqrt{3}  \\  l \: h \:s =  \frac{2 +  \sqrt{3} }{2 -  \sqrt[]{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  \\  =    \frac{ ({2 +  \sqrt{3}) }^{2} }{ {(2)}^{2} -  {( \sqrt{3}) }^{2}  }  \\  = \frac{4 + 4\sqrt{3}  + 3}{4 - 3}  \\  = 7 + 4\sqrt{3}

Now comparing L.H.S and R.H.S

We get,

7 + 4 \sqrt{3}  = a + b \sqrt{3}

therefore here,

a \:  = 7 \: and \: b = 4

Hope it will be helpful ☺️

Mark me brainliest

Similar questions