Math, asked by anulata429, 3 months ago

If
 \frac{2 +  \sqrt{5} }{2 -  \sqrt{5} }  = x
and
 \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} }  =  \: y

find the value of
 {x}^{2}  -  {y}^{2}

Answers

Answered by ridhya77677
2

x =   \frac{2 +  \sqrt{5} }{2 -  \sqrt{5} }  =  \frac{(2 +  \sqrt{5})(2 +  \sqrt{5} ) }{(2  -  \sqrt{5})(2 +  \sqrt{5}}   =  \frac{4 + 5 + 4 \sqrt{5} }{4 - 5}  =  - 9  - 4 \sqrt{5} \\ y =  \frac{2  -  \sqrt{5} }{2  +  \sqrt{5} }   =\frac{(2  -   \sqrt{5})(2  -   \sqrt{5} ) }{(2   +   \sqrt{5})(2  -   \sqrt{5}} =  4 \sqrt{5}  - 9\\  {x}^{2}  -  {y}^{2}  \\   = (x + y)(x - y) \\  = ( - 9 - 4 \sqrt{5}  + 4 \sqrt{5}  - 9)( - 9 - 4 \sqrt{5}  - 4 \sqrt{5}  + 9) \\  =  - 18 \times ( - 8 \sqrt{5} ) \\  = 144 \sqrt{5}

Similar questions