Math, asked by lonovo, 6 hours ago

If
 \frac{2 \sqrt{7  }  + 3 \sqrt{5} }{ \sqrt{7}  +  \sqrt{5} }
=
p \sqrt{35}  + q
Then what is the value of 2p+q​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{2 \sqrt{7 } + 3 \sqrt{5} }{ \sqrt{7} + \sqrt{5} } = q + p \sqrt{35}

On rationalizing the denominator, we get

\rm :\longmapsto\:\dfrac{2 \sqrt{7 } + 3 \sqrt{5} }{ \sqrt{7} + \sqrt{5} }  \times \dfrac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7}  -  \sqrt{5} } = q + p \sqrt{35}

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}} \\

So, using this identity, we get

\rm :\longmapsto\:\dfrac{14 - 2 \sqrt{35}  + 3 \sqrt{35}  - 15}{( \sqrt{7}) ^{2} - (\sqrt{5})^{2} }  = q + p \sqrt{35}

\rm :\longmapsto\:\dfrac{ - 1 +  \sqrt{35}}{7 - 5 }  = q + p \sqrt{35}

\rm :\longmapsto\:\dfrac{ - 1 +  \sqrt{35}}{2 }  = q + p \sqrt{35}

\rm :\longmapsto\: -  \: \dfrac{1}{2} +  \dfrac{\sqrt{35}}{2 }  = q + p \sqrt{35}

So, on comparing, we get

 \purple{\rm :\longmapsto\:p = \dfrac{1}{2}}

 \purple{\rm :\longmapsto\:q  \: = \:  -  \:  \dfrac{1}{2}}

So,

 \purple{\rm :\longmapsto\:2p + q}

\rm \:  =  \: 2 \times \dfrac{1}{2}  - \dfrac{1}{2}

\rm \:  =  \: 1  - \dfrac{1}{2}

\rm \:  =  \:\dfrac{1}{2}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know :

➢  (a + b)² = a² + 2ab + b²

➢  (a - b)² = a² - 2ab + b²

➢  a² - b² = (a + b)(a - b)

➢  (a + b)² = (a - b)² + 4ab

➢  (a - b)² = (a + b)² - 4ab

➢  (a + b)² + (a - b)² = 2(a² + b²)

➢  (a + b)³ = a³ + b³ + 3ab(a + b)

➢  (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions