Math, asked by krithick14, 1 year ago

if
 \frac{241}{4000}  =  \frac{241}{ {2}^{n}  \times  {5}^{m} }  find \: the \: value \: of \: n \: and \: m

Answers

Answered by siddhartharao77
2
Given :  \frac{241}{4000} =  \frac{241}{2^n * 5^m}

 \frac{241}{2 * 2 * 2 * 2 * 2 * 5 * 5 * 5} =  \frac{241}{2^n * 5^m}

 \frac{241}{2^5 * 5^3} =  \frac{241}{2^n * 5^m}


Therefore n = 5, m = 3.


Hope this helps!

siddhartharao77: Gud Luck...
Answered by sushant2505
0
Hi☺☺..

 \frac{241}{4000}  =  \frac{241}{2 {}^{n} \times  {5}^{m}  }  \\  \\ by \: cross \: multiplying \: \\   we \:get \\  \\  {2}^{n}  \times  {5}^{m}  = 4000 \\  \\  {2}^{n}  \times  {5}^{m}  = 4  \times 1000 =  {2}^{2}  \times  {10}^{3}  \\  \\  {2}^{n}  \times  {5}^{m}  =  {2}^{2}  \times  {(5 \times 2)}^{3}   \\  \\ {2}^{n}  \times  {5}^{m}  =  {2}^{2}   \times  {5}^{3}  \times  {2}^{3}  \\  \\{2}^{n}  \times  {5}^{m}   = {2}^{5}   \times  {5}^{3}   \\  \\  =  > n = 5 \: and \:  \: m = 3
Similar questions