Math, asked by richi20, 11 months ago

if
 \frac{3}{5}
of a number exceeds its
 \frac{2}{7}
by 44 ,
find the number..​

Answers

Answered by Anonymous
131

Solution :-

Let the number be x.

_______________________

3/5 of x = 3x/5

2/5 of x = 2x/5

________________________

According To Question :-

\rightarrow{\sf{\dfrac{3x}{5} = \dfrac{2x}{7} + 44}}

\rightarrow{\sf{\dfrac{3x}{5} - \dfrac{2x}{7} = 44}}

\rightarrow{\sf{\dfrac{21x - 10x}{35} = 44}}

\rightarrow{\sf{\dfrac{11x}{35} = 44}}

\rightarrow{\sf{ x = \dfrac{44 \times 35}{11}}}

\rightarrow{\boxed{\sf{ x = 140}}}

________________________

Hence,

\boxed{\boxed{\sf{The\ number\ is\ 140.}}}

Answered by Anonymous
102

 \dfrac{3}{5} of a number exceeds its  \dfrac{2}{7} by 4.

_______ [GIVEN]

We have to find the number.

______________________________

» Let the number be M.

Given numbers = \dfrac{3}{5} and \dfrac{2}{7}

We let number M. So, now numbers are..

\dfrac{3M}{5} and \dfrac{2M}{7}

» \dfrac{3M}{5} of a number exceeds (increase means plus) it's \dfrac{2M}{7} by 44.

  • A.T.Q.

=> \dfrac{3M}{5} = 44 + \dfrac{2M}{7}

=> \dfrac{3M}{5} - \dfrac{2M}{7} = 44

LCM of 5 and 7 is 35.

=> \dfrac{21M\:-\:10M}{35} = 44

=> \dfrac{11M}{35} = 44

=> 11M = 44 × 35

=> 11M = 1540

=> M = \dfrac{1540}{11}

=> M = 140.

________________________________

We have to find number. And we let the number be M.

________________________________

So, the number is 140.

__________ [ANSWER]

\dfrac{3M}{5} = 44 + \dfrac{2M}{7}

Put M = 140

=> \dfrac{3\:\times\:140}{5} = 44 + \dfrac{2\:\times\:140}{7}

=> \dfrac{420}{5} = 44 + \dfrac{280}{7}

=> 84 = 44 + 40

=> 84 = 84

___________ [HENCE VERIFIED]

Similar questions