if
![\frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } = a + b \sqrt{3} \\ find \: the \: value \: of \: \: a \: and \: b \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } = a + b \sqrt{3} \\ find \: the \: value \: of \: \: a \: and \: b](https://tex.z-dn.net/?f=+%5Cfrac%7B5+%2B+2+%5Csqrt%7B3%7D+%7D%7B7+%2B+4+%5Csqrt%7B3%7D+%7D++%3D+a+%2B+b+%5Csqrt%7B3%7D++%5C%5C+find+%5C%3A+the+%5C%3A+value+%5C%3A+of+%5C%3A++%5C%3A+a+%5C%3A+and+%5C%3A+b)
Answers
Answered by
13
Given,
![\frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } = a + b \sqrt{3} \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } = a + b \sqrt{3}](https://tex.z-dn.net/?f=+%5Cfrac%7B5+%2B+2+%5Csqrt%7B3%7D+%7D%7B7+%2B+4+%5Csqrt%7B3%7D+%7D+%3D+a+%2B+b+%5Csqrt%7B3%7D+)
To find ,
the value a and b
Main solution :
Let's simplify the L.H.S by rationalising its denominator
![\frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } \times \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} } \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } \times \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }](https://tex.z-dn.net/?f=+%5Cfrac%7B5+%2B+2+%5Csqrt%7B3%7D+%7D%7B7+%2B+4+%5Csqrt%7B3%7D+%7D+%5Ctimes+%5Cfrac%7B7+-+4+%5Csqrt%7B3%7D+%7D%7B7+-+4+%5Csqrt%7B3%7D+%7D+)
We will use identity (a+b)(a-b)=a^2-b^2 in the denominator.
![\frac{5(7 - 4 \sqrt{3}) + 2 \sqrt{3}(7 - 4 \sqrt{3} ) }{ {7}^{2} - {4 \sqrt{3} }^{2} } \frac{5(7 - 4 \sqrt{3}) + 2 \sqrt{3}(7 - 4 \sqrt{3} ) }{ {7}^{2} - {4 \sqrt{3} }^{2} }](https://tex.z-dn.net/?f=+%5Cfrac%7B5%287+-+4+%5Csqrt%7B3%7D%29+%2B+2+%5Csqrt%7B3%7D%287+-+4+%5Csqrt%7B3%7D+%29+%7D%7B+%7B7%7D%5E%7B2%7D+-+%7B4+%5Csqrt%7B3%7D+%7D%5E%7B2%7D+%7D+)
![\frac{35 - 20 \sqrt{3} + 14 \sqrt{3} - 24}{49 - 48} \frac{35 - 20 \sqrt{3} + 14 \sqrt{3} - 24}{49 - 48}](https://tex.z-dn.net/?f=+%5Cfrac%7B35+-+20+%5Csqrt%7B3%7D+%2B+14+%5Csqrt%7B3%7D+-+24%7D%7B49+-+48%7D+)
![\frac{11 - 6 \sqrt{3} }{1} \frac{11 - 6 \sqrt{3} }{1}](https://tex.z-dn.net/?f=+%5Cfrac%7B11+-+6+%5Csqrt%7B3%7D+%7D%7B1%7D+)
![11 - 6 \sqrt{3} 11 - 6 \sqrt{3}](https://tex.z-dn.net/?f=11+-+6+%5Csqrt%7B3%7D+)
![11 + ( - 6 \sqrt{3} ) 11 + ( - 6 \sqrt{3} )](https://tex.z-dn.net/?f=11+%2B+%28+-+6+%5Csqrt%7B3%7D+%29)
Now we will compare it with RHS,Upon comparing we get,
![\textbf{a = 11 , and} \textbf{a = 11 , and}](https://tex.z-dn.net/?f=%5Ctextbf%7Ba+%3D+11+%2C+and%7D)
To find ,
the value a and b
Main solution :
Let's simplify the L.H.S by rationalising its denominator
We will use identity (a+b)(a-b)=a^2-b^2 in the denominator.
Now we will compare it with RHS,Upon comparing we get,
BrainlyQueen01:
35 - 24 = 11
Answered by
20
Given :
To find the value of a and b in the given expression.
On simplifying it's L.H.S by rationalising it's denominator.
We get ;
On comparing the result of L.H.S with R.H.S , we get;
Therefore,
Thanks for the question!
Similar questions