Math, asked by katha02, 1 year ago

if
 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}  \\ find \: the \: value \: of \:  \: a \: and \: b

Answers

Answered by Prakhar2908
13
Given,



 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } = a + b \sqrt{3}



To find ,


the value a and b



Main solution :

Let's simplify the L.H.S by rationalising its denominator


 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } \times \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }


We will use identity (a+b)(a-b)=a^2-b^2 in the denominator.


 \frac{5(7 - 4 \sqrt{3}) + 2 \sqrt{3}(7 - 4 \sqrt{3} ) }{ {7}^{2} - {4 \sqrt{3} }^{2} }


 \frac{35 - 20 \sqrt{3} + 14 \sqrt{3} - 24}{49 - 48}


 \frac{11 - 6 \sqrt{3} }{1}


11 - 6 \sqrt{3}


11 + ( - 6 \sqrt{3} )


Now we will compare it with RHS,Upon comparing we get,


\textbf{a = 11 , and}


\bold{b = -6}

BrainlyQueen01: 35 - 24 = 11
Prakhar2908: Pls given an edit option pls
BrainlyQueen01: Done
Answered by BrainlyQueen01
20
\bold{\underline{\large{Solution :}}}

Given :

 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } = a + b \sqrt{3}

To find the value of a and b in the given expression.

On simplifying it's L.H.S by rationalising it's denominator.

We get ;

 \frac{ 5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } \\ \\ \frac{ 5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } \times \frac{ 7 - 4\sqrt{3} }{7 - 4 \sqrt{3} } \\ \\ \frac{5(7 - 4 \sqrt{3} ) + 2 \sqrt{3} (7 - 4 \sqrt{3} )}{(7) {}^{2} - (4 \sqrt{3}) {}^{2} } \\ \\ \frac{35 - 20 \sqrt{3} + 14 \sqrt{3} -24 }{49 - 48} \\ \\ \frac{11 - 6 \sqrt{3} }{1}

 11 + (-6) \sqrt{3}

On comparing the result of L.H.S with R.H.S , we get;

Therefore,

 \therefore{ \bold{ \: a = 11 \: \: and \: \: b = - 6}}

Thanks for the question!

BrainlyQueen01: Thanks !
Prakhar2908: Perfect Answer ! No room for improvement.
DevilDoll12: Very Well Explained ❤ Gr8
BrainlyQueen01: Thanks :)
BrainlyQueen01: to both of you (:
DevilDoll12: Wello❤ Only to Uh....xD
Similar questions