Math, asked by akashbarman333ab, 1 day ago

If
\frac{a(b + c - a)}{ log(a) }  =  \frac{b(c + a - b)}{ log(b) }  =  \frac{c(a + b - c)}{ log(c) }
Show that
 {b}^{a}  {a}^{b}  =  {c}^{a}  {a}^{c}  =  {b}^{c}  {c}^{b}

Answers

Answered by kakalisarkarraju2011
2

Answer:

If

\frac{a(b + c - a)}{ log(a) } = \frac{b(c + a - b)}{ log(b) } = \frac{c(a + b - c)}{ log(c) }

Show that

 {b}^{a} {a}^{b} = {c}^{a} {a}^{c} = {b}^{c} {c}^{b}

Step-by-step explanation:

If

\frac{a(b + c - a)}{ log(a) } = \frac{b(c + a - b)}{ log(b) } = \frac{c(a + b - c)}{ log(c) }

Show that

 {b}^{a} {a}^{b} = {c}^{a} {a}^{c} = {b}^{c} {c}^{b}

Similar questions