Math, asked by demolisher52, 4 months ago

if
 \frac{a}{b} = \frac{3}{2} then \: find \: the \: value \: of \: \frac{4 {a}^{2} + 3 {b}^{2} }{4 {a}^{2} - 3 {b}^{2} }
​ please answer it I will follow you and also mark you brainlist

Answers

Answered by TheFairyTale
7

Answer:

  • ➳ 2

GivEn:-

  •  \sf\dfrac{a}{b} = \dfrac{3}{2}

To Find :-

  •  \sf value \: of \: \dfrac{4 {a}^{2} + 3 {b}^{2} }{4 {a}^{2} - 3 {b}^{2} }

Step-by-step explanation:

➠ We will find the value with two simple methods! Let's do it.

Method 1 :-

 \sf\dfrac{a}{b} = \dfrac{3}{2}

 \implies \sf \: 2a = 3b

Now,

 \sf \dfrac{4 {a}^{2} + 3 {b}^{2} }{4 {a}^{2} - 3 {b}^{2} }

 \implies \sf \:  \dfrac{ {(2a)}^{2} +  3 {b}^{2}  }{{(2a)}^{2}  -   3 {b}^{2}}

As, we get 2a = 3b, we will put the value of 2a there!

 \implies \sf \:  \dfrac{ {(3b)}^{2} +  3 {b}^{2}  }{{(3b)}^{2}  -   3 {b}^{2}}

 \implies \sf \:  \dfrac{ 9b^{2} +  3 {b}^{2}  }{{9b}^{2}  -   3 {b}^{2}}

 \implies \sf \:  \dfrac{ 12b^{2}  }{6 {b}^{2} }

 \boxed{\implies \sf \:  2}

Now, another method!

Method 2 :-

 \sf\dfrac{a}{b} = \dfrac{3}{2}

➠ a = 3k

➠ b = 2k (where k,common factor ≠ 0)

 \sf \dfrac{4 {a}^{2} + 3 {b}^{2} }{4 {a}^{2} - 3 {b}^{2} }

Now putting the values, we would get,

 \implies  \sf \dfrac{4 \times  ({3k})^{2} + 3  \times  ({2k})^{2} }{4  \times ({3k})^{2} - 3  \times ({2k})^{2} }

 \implies \sf \:  \dfrac{4 \times 9 {k}^{2} + 3 \times 4 {k}^{2}  }{4 \times 9 {k}^{2}  -  3 \times 4 {k}^{2} }

 \implies \sf \:  \dfrac{36 {k}^{2} + 12 {k}^{2}  }{36 {k}^{2}  -  12{k}^{2} }

  \implies  \sf \dfrac{  {48k}^{2} }{ {24k}^{2} }

 \boxed{\implies \sf \:  2}

Therefore, the answer would be 2

Answered by vinshultyagi
29

We are given:-

\sf\dfrac{a}{b} = \dfrac{3}{2}

To Find :-

\sf  \dfrac{4 {a}^{2} + 3 {b}^{2} }{4 {a}^{2} - 3 {b}^{2} }

Solution:-

\sf\dfrac{a}{b} = \dfrac{3}{2}

\to{\underline{\boxed \sf \: 2a = 3b}}

\sf \dfrac{4 {a}^{2} + 3 {b}^{2} }{4 {a}^{2} - 3 {b}^{2} }

\to\sf \: \dfrac{ {(2a)}^{2} + 3 {b}^{2} }{{(2a)}^{2} - 3 {b}^{2}}

As; 2a = 3b,

\to \sf \: \dfrac{ {(3b)}^{2} + 3 {b}^{2} }{{(3b)}^{2} - 3 {b}^{2}}

\to \sf \: \dfrac{ 9b^{2} + 3 {b}^{2} }{{9b}^{2} - 3 {b}^{2}}

\to \sf \: \dfrac{ 12b^{2} }{6 {b}^{2} }

{\underline {\boxed{\to \sf \: 2} }}

Similar questions