Math, asked by cocka, 2 months ago

If
 \frac{ log(a) }{b - c}  + =  \frac{ log(b) }{c - a}  =  \frac{ log(c) }{a - b}
Then Find The Value of
 {a}^{a}  {b}^{b}  {c}^{c}  =  ?

#Don'tSpam​

Answers

Answered by singhamanpratap0249
14

Answer:

If </p><p>\frac{ log(a) }{b - c} + = \frac{ log(b) }{c - a} = \frac{ log(c) }{a - b}

Then Find The Value of

 {a}^{a} {b}^{b} {c}^{c} = </p><p>

ur answer in this attachment☺

Attachments:
Answered by HypersomniacAmbivert
232

\huge\bold{QUESTION}

If  \dfrac{ log(a) }{b - c}  = \dfrac{ log(b) }{c - a} = \dfrac{ log(c) }{a - b}

Then Find The Value of

\bold{a}^{a} {b}^{b} {c}^{c} = ?

\huge\bold{ANSWER}

GIVEN:-

 \dfrac{ log(a) }{b - c}  = \dfrac{ log(b) }{c - a} = \dfrac{ log(c) }{a - b}

TO FIND:-

 {a}^{a} {b}^{b} {c}^{c} = ?

SOLUTION:-

☞Let  \dfrac{ log(a) }{b - c}  = \dfrac{ log(b) }{c - a} = \dfrac{ log(c) }{a - b}=k

 =  &gt;   \dfrac{ log(a) }{b - c} = k \\  =  &gt;  log(a)  = k(b - c)

(Multiplying a on both side)

  =  &gt; a \times loga = a \times k(b - c)

☞As we know,

n log_{b}(a)  =  log_{b}( {a}^{n} )

So,From Above:

 log( {a}^{a} )  = akb - akc______(i)

☞Similarly,

 =  &gt;   \dfrac{ log(b) }{c- a} = k \\  =  &gt;  log(b)  = k(c - a) \\   =  &gt; b \times logb = b \times k(c- a) \\  =  &gt;  log( {b}^{b} )  = bkc - bka______(ii)

☞And also,

  &gt;   \dfrac{ log(c) }{a - b} = k \\  =  &gt;  log(c)  = k(a - b) \\   =  &gt; c\times logc = c \times k(a- b) \\  =  &gt;  log( {c}^{c } )  = cka - ckb______(iii)

☞Adding Equation (i),(ii),(iii)

 log( {a}^{a} ) +  log( {b}^ {b} )  +  log( {c}^{c} )  \\= akb - akc + bkc - bka + cka - ckb \\  \\   = &gt;  log( {a}^{a} {b}^{b}   {c}^{c} )  = akb - bka + bkc - ckb + cka - akc

(since,  log_{b}(a)  +  log_{b}(c)  =  log_{b}(ac) )

So

 =  &gt; log( {a}^{a} {b}^{b}   {c}^{c} ) = 0 \\  =  &gt; {a}^{a} {b}^{b}   {c}^{c} = 1

Since,

 log_{b}(a)  = 0 \\  =  &gt;  {b}^{0 }  = a  \\ =  &gt; a = 1

Therefore, {a}^{a} {b}^{b} {c}^{c} = 1

ADDITIONAL INFORMATION

Some Important Trigonometric Formulas:-

 log_{a}(b)  = x =  &gt;  {a}^{x}  = b

✯loga+logb=logab

✯loga-logb=log(a/b)

 {a}^{ log_{a}(m) }  = m

 log_{a}( {x}^{n} )  = n  log_{a}(x)

 log_{ {a}^{m} }(x)  =  \frac{1}{m}  log_{a}(x)

 log_{c}(a)  =  \dfrac{ log_{b}(c) }{ log_{b}(a) }

Similar questions