Math, asked by utsavbhurteluna, 6 months ago

If
 \frac{ \sin(a) }{1 +  \sin(a) }  +  \frac{ \sin(b) }{1 +  \sin(b) }  = 2
; prove that
 { \sec(a) }^{2} (1 -  \sin(a))  +   { \sec(b) }^{2} (1 -  \sin(b))  = 0
.​

Answers

Answered by Aryan0123
12

Given:

\dfrac{sin A}{1 + sin A} + \dfrac{sin B}{1 + sin B}  = 2

To Prove:

sec² A (1 - sin A) + sec² B (1 - sin B) = 0

Proof:

\dfrac{sin A (1 + sin B) + sin B (1 + sin A)}{(1 + sin A) (1 + sin B)} = 2

sin A + sin A sin B + sin B + sin A sin B = 2 (1 + sin B + sin A + sin A sin B)

sin A + sin B + 2 sin A sin B = 2 sin A + 2 sin B + 2 sin A sin B + 2

(2 sin A - sin A) + (2 sin B - sin B) + 2 = 0

sin A + sin B + 2 = 0  →→→→→→→→→ (Equation 1)

sec² A (1 - sin A) + sec² B (1 - sin B) = 0

LHS = sec² A (1 - sin A) + sec² B (1 - sin B)

\dfrac{1}{cos^{2} A} (1 - sin A) + \dfrac{1}{cos^{2} B} (1 - sin B)

\dfrac{1 - sin A}{cos^{2} A} + \dfrac{1 - sin B}{cos^{2} B}

\\\dfrac{1 - sin A}{(1 + sin A) (1 - sin A)} + \dfrac{1 - sin B}{(1 + sin B) (1 - sin B)} \\\dfrac{1}{1 + sin A} + \dfrac{1}{1 + sin B} \\\dfrac{1 + sin B + 1 + sin A}{(1 + sin A) (1 + sin B)}

\dfrac{sin A + sin B + 2}{(1 + sin A) (1 + sin B)}

From Equation 1, we have:

\dfrac{0}{(1 + sin A) (1 + sin B)} = 0 = RHS

Hence Proved.

Answered by khansaaiqa
0

Answer:

hope the above answer helps you

Similar questions