Math, asked by sahilkhan317, 1 year ago

If
 \frac{ \sqrt{2}  +  \sqrt{3} }{3 \sqrt{2}  - 2 \sqrt{3} }  = x  +  \sqrt{16} y
find the value of x and y​

Answers

Answered by Anonymous
0

 \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2} - 2 \sqrt{3} }  = x +  \sqrt{16} y

Consider Left Hand Side

 \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2} - 2 \sqrt{3} }

The simplest Rationalising factor of 3√2 - 2√3 is 3√2 + 2√3. So, multiply the numerator and denominator of the given fraction by Rationalising factor.

 =  \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2} - 2 \sqrt{3}  }  \times  \frac{3 \sqrt{2}  + 2 \sqrt{3} }{3 \sqrt{2} + 2 \sqrt{3} }

 = \frac{ \sqrt{2} +  \sqrt{3}(3 \sqrt{2}  + 2 \sqrt{3} ) }{ {( 3\sqrt{2}) }^{2}  -  {(2 \sqrt{3} )}^{2} }

Since (x + y)(x - y) = x² - y²

 =  \frac{ \sqrt{2}(3 \sqrt{2} + 2 \sqrt{3}) +  \sqrt{3}(3 \sqrt{2} + 2 \sqrt{3})  }{9(2) - 4(3)}

 =  \frac{3(2) + 2 \sqrt{3 \times 2} + 3 \sqrt{3 \times 2}  + 2(3)}{18 - 12}

 = \frac{6 + 2 \sqrt{6} + 3 \sqrt{6} + 6 }{6}

 =  \frac{12 + 5 \sqrt{6} }{6}

 =  \frac{12}{6}  +  \frac{5 \sqrt{6} }{6}

 = 2 +  \frac{5 \sqrt{6} }{ \sqrt{6} \times  \sqrt{6}  }

 = 2 + \frac{5}{ \sqrt{6} }

now \: consider \\   \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2} - 2 \sqrt{3} }  = x +  \sqrt{16} y

i.e \:2 + \frac{5}{ \sqrt{6} } = x +  \sqrt{16}y

Equating corresponding rational and irrational factors, we have

x = 2

 \sqrt{16} y =  \frac{5}{ \sqrt{6} }

y =  \frac{ \frac{5}{ \sqrt{6} } }{ \sqrt{16} }

y =  \frac{5}{ \sqrt{6} \times  \sqrt{16}  }

y =  \frac{5}{ \sqrt{6} \times 4}

y =  \frac{5}{ 4\sqrt{6} }

\boxed{\tt{x = 2}}

\boxed{\tt{  y =  \frac{5}{ 4\sqrt{6} } }}

Similar questions