Math, asked by sahilkhan317, 1 year ago

If
 \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }   = x + y \sqrt{15}
find the value of x and y​


sahilkhan317: koi bhej do plz solution
sahilkhan317: plz plz plz

Answers

Answered by Anonymous
0

 \frac{ \sqrt{5} +  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }  = x + y \sqrt{15}

Consider Left Hand Side

 \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3} }

The simplest Rationalising factor of √5 - √3 is √5 + √3. So, multiply the numerator and denominator of the given fraction by Rationalising factor.

 =  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  }  \times  \frac{ \sqrt{5} +  \sqrt{3} }{ \sqrt{5} +  \sqrt{3}  }

 =  \frac{ {( \sqrt{5} +  \sqrt{3})  }^{2} }{  {( \sqrt{5}) }^{2} -  {( \sqrt{3}) }^{2} }

Since (x + y)(x - y) = x² - y²

 =  \frac{ {( \sqrt{5})}^{2} + 2( \sqrt{5})( \sqrt{3}) +  {( \sqrt{3})}^{2}  }{5  - 3}

Since (x + y)² = x² + 2xy + y²

 =  \frac{5 + 2( \sqrt{5 \times 3}) + 3 }{2}

 =  \frac{8 + 2 \sqrt{15} }{2}

 =  \frac{2(4 +  \sqrt{15}) }{2}

 = 4 +  \sqrt{15}

now \: consider \\  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  } =x + y \sqrt{15}

i.e \: 4 +  \sqrt{15}  = x + y \sqrt{15}

Equating corresponding rational and irrational factors, we have

x = 4

y√15 = √15

=> y = 1

\boxed{\tt{x = 4}}

\boxed{\tt{y = 1}}

Similar questions