if
![if \: 5 + 2\sqrt{2} \: find \: a + \frac{1}{a} if \: 5 + 2\sqrt{2} \: find \: a + \frac{1}{a}](https://tex.z-dn.net/?f=if++%5C%3A+5+%2B+++2%5Csqrt%7B2%7D++%5C%3A+find+%5C%3A+a+%2B++%5Cfrac%7B1%7D%7Ba%7D+)
Answers
Answer:
Hello friends!!
\frac{ \sqrt{5} - 2}{ \sqrt{5} + 2} - \frac{ \sqrt{5} + 2}{ \sqrt{5} - 2 } = a + b \sqrt{5}
5
+2
5
−2
−
5
−2
5
+2
=a+b
5
First we have to rationalise the denominator.
\frac{ \sqrt{5} - 2 }{ \sqrt{5} + 2 } \times \frac{ \sqrt{5} - 2}{ \sqrt{5} - 2 } - \frac{ \sqrt{5} + 2 }{ \sqrt{5} - 2} \times \frac{ \sqrt{5} + 2}{ \sqrt{5} + 2} = a + b \sqrt{5}
5
+2
5
−2
×
5
−2
5
−2
−
5
−2
5
+2
×
5
+2
5
+2
=a+b
5
$$\frac{ (\sqrt{5} - 2)( \sqrt{5} - 2) }{( \sqrt{5} + 2)( \sqrt{5} - 2) } - \frac{( \sqrt{5} + 2)( \sqrt{5} + 2) }{( \sqrt{5} -2)( \sqrt{5} + 2)} = a + b \sqrt{5}$$
$$\frac{ {( \sqrt{5} - 2)}^{2} }{( \sqrt{5} - 2)( \sqrt{5} + 2) } - \frac{ {( \sqrt{5} + 2)}^{2} }{( \sqrt{5} + 2)( \sqrt{5} + 2) } = a + b \sqrt{5}$$
Using identity:
( a - b )² = a² + b² - 2ab
( a + b )² = a² + b² + 2ab
( a - b )( a + b ) = a² - b²
$$\frac{ {( \sqrt{5} )}^{2} + {(2)}^{2} - 2 \times 2 \times \sqrt{5} }{ {( \sqrt{5} )}^{2} - {(2)}^{2} } - \frac{ {( \sqrt{5} )}^{2} + {(2)}^{2} + 2 \times 2 \times \sqrt{5} }{ {( \sqrt{5} )}^{2} - {(2)}^{2} } = a + b \sqrt{5}$$
$$\frac{5 + 4 - 4 \sqrt{5} }{5 - 4} - \frac{5 + 4 + 4 \sqrt{5} }{5 - 4} = a + b \sqrt{5}$$
$$\frac{9 - 4 \sqrt{5} }{1} - \frac{9 + 4 \sqrt{5} }{1} = a + b \sqrt{5}$$
$$9 - 4 \sqrt{5} - (9 + 4\sqrt{5} ) = a + b \sqrt{5}$$
$$9 - 4 \sqrt{5} - 9 - 4 \sqrt{5} = a + b \sqrt{5}$$
$$- 8 \sqrt{5} = a + b \sqrt{5}$$
Comparing these values,
a = 0
b = - 8
HOPE IT HELPS YOU...
Step-by-step explanation: