Math, asked by roshnikumawat1234, 1 year ago

if
if \alpha \: and \beta are \: the \: zeroes \: of \: polynomial \: p(x) = 3x { \:  }^{2}  - 14x \:  + 15 \: find \: the \: value \: of \:  \alpha  {}^{2}  +  \beta  {}^{2}

Answers

Answered by ItSdHrUvSiNgH
1

Step-by-step explanation:

 \alpha  \: and \:  \beta  \: are \: zeros....... \\  \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{14}{3}........(1)  \\  \alpha  \beta  =  \frac{c}{a}  =  \frac{15}{3}  = 5 \\  \alpha  =  \frac{5}{ \beta } .........(2) \\ put \: (2) \: in \: (1) =  >  \\  \frac{5}{ \beta }  +  \beta  =  \frac{14}{3}  \\ 5 +  { \beta }^{2}  =  \frac{14}{3}  \beta  \\ 15 + 3 { \beta }^{2}  = 14 \beta  \\ 3  { \beta }^{2}  - 14 \beta  + 15 = 0 \\ from \: here \: you \: can \: solve \: futher....

Similar questions