Math, asked by Anonymous, 1 day ago

If  \int \frac{dx}{1+\sin x} = tan (\frac{x}{2}+a)+b , find the values of a and b.

Answers

Answered by Hellion
16

 \sf \underline{Answer}

Given:-

 \sf \int \frac{dx}{1+\sin x} = tan (\frac{x}{2}+a)+b – (i)

But,

 \sf \int \frac{dx}{1+\sin x}

\sf =\int \frac{dx}{1+\cos (\frac{π}{2}- x)}

\sf =  \int \frac{dx}{1+\cos( x - \frac{π}{2})}

 \sf = \int \frac{dx}{2\cos²( \frac{x}{2} - \frac{π}{4})}

\sf = \frac{1}{2} \sec ²( \frac{x}{2} - \frac{π}{4}) dx

 \sf = \frac{1}{2}  \frac{\tan ( \frac{x}{2} - \frac{π}{4})}{ \frac{1}{2} } + C

 \sf  \tan (\frac{x}{2} - \frac{π}{4}) + C – (ii)

on comparing (i) and (ii),

 \sf \: a  =  \frac{ - \pi}{4}  \: and \: b = C, any \: real \: number

___________________________________

Similar questions