Math, asked by Anonymous, 6 months ago

If \large\rm { \alpha , \beta , \gamma} are roots of \large\rm { x^{3} + ax^{2} + b =0} then the value of determinant  \left[\  \textless \ br /\  \textgreater \ \begin{array}{c c c}\  \textless \ br /\  \textgreater \ \  \textless \ br /\  \textgreater \ \alpha & \beta & \gamma \\\  \textless \ br /\  \textgreater \ \beta & \gamma & \alpha \\\  \textless \ br /\  \textgreater \ \gamma & \alpha & \beta \  \textless \ br /\  \textgreater \ \end{array}\  \textless \ br /\  \textgreater \ \right]

Answers

Answered by Anonymous
109

♣ Qᴜᴇꜱᴛɪᴏɴ :

If α, β, γ are the roots of x³ + ax² + b = 0, then the value of determinant

\left|\begin{array}{lll}\alpha & \beta & \gamma \\\beta & \gamma & \alpha \\\gamma & \alpha & \beta\end{array}\right|

★═════════════════★  

♣ ᴀɴꜱᴡᴇʀ :

\huge\boxed{\sf{\mathrm{a}^{3}}}

★═════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

Because α, β, γ are the roots of x³ + ax² + b = 0, therefore,

\sf{\alpha+\beta+\gamma=-a, \alpha \beta+\beta \gamma+\gamma \alpha=0, \alpha \beta \gamma=-\beta}

\left|\begin{array}{ccc}\alpha & \beta & \gamma \\\beta & \gamma & \alpha \\\gamma & \alpha & \beta\end{array}\right|=-(\alpha+\beta+\gamma)\left[\alpha^{2}+\beta^{2}\right.\left.+\gamma^{2}-\alpha \beta-\beta \gamma-\gamma \alpha\right]

= -(-a)[(-a)² - 3 × 0]

= a × a²

= a³

Alternative method :

\sf{\text { Value of determinant }=\Delta=\alpha\left(\beta \cdot \gamma-\alpha^{2}\right)-\beta\left(\alpha \cdot \gamma-\beta^{2}\right)+\gamma\left(\alpha \cdot \beta-\gamma^{2}\right)}

\begin{array}{l}\rightarrow \Delta=3 . \alpha . \beta \cdot \gamma-\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right) \\\\\rightarrow \alpha . \beta \cdot \gamma=-\mathrm{b} \\\\\rightarrow \alpha+\beta+\gamma=-\mathrm{a} \\\\\rightarrow \alpha \beta+\beta \gamma+\gamma \alpha=0\end{array}

\begin{array}{l}\text { And } \alpha^{3}+\beta^{3}+\gamma^{3}-3 \alpha \beta \gamma=(\alpha+\beta+\gamma)\left(\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta-\beta \gamma-\gamma \alpha\right) \\\\\text { Also } \alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha)\end{array}

Substituting we get ;

\begin{array}{l}\alpha^{3}+\beta^{3}+\gamma^{3}=3(-\mathrm{b})+(-\mathrm{a})\left(\mathrm{a}^{2}\right) \\\\\therefore \Delta=\mathrm{a}^{3}+3 \mathrm{b}-3 \mathrm{b}\end{array}

\large\boxed{\sf{\Rightarrow \Delta=\mathrm{a}^{3}}}

Answered by rapunzel4056
8

Step-by-step explanation:

Hope it helps u........

Attachments:
Similar questions