if , then
Answers
Answered by
12
Thinking Process⚡
we know that
So now
Hence, 0 is the required answer.
Answered by
2
we know that \large\rm { \big\lgroup \alpha + \beta + \gamma + \delta \big\rgroup = \pi}
⎩
⎪
⎧
α+β+γ+δ
⎭
⎪
⎫
=π
So now
\large\rm { \alpha + \beta = \pi -( \delta + \gamma)}α+β=π−(δ+γ)
\large\rm { \beta + \gamma = \pi - ( \alpha + \delta)}β+γ=π−(α+δ)
\small\rm { = - \cos( \gamma + \delta) - \cos(\alpha + \delta) + \cos( \gamma + \delta) + \cos (\alpha + \delta)}=−cos(γ+δ)−cos(α+δ)+cos(γ+δ)+cos(α+δ)
\small\rm { = \cancel{ - \cos( \gamma + \delta)} - \cancel{\cos(\alpha + \delta) } + \cancel{ \cos( \gamma + \delta)} + \cancel{\cos (\alpha + \delta)}}=
−cos(γ+δ)
−
cos(α+δ)
+
cos(γ+δ)
+
cos(α+δ)
\large\rm { = 0}=0
Hence, 0 is the required answer.
Similar questions