Math, asked by Anonymous, 4 months ago

if \large\rm { \big\lgroup \alpha + \beta + \gamma + \delta \big\rgroup = \pi} , then
\large\rm { \displaystyle\sum \cos \alpha \ \cos \beta - \displaystyle\sum \sin \alpha \ \sin \beta = ?}

Answers

Answered by Anonymous
12

\large\rm { \displaystyle\sum \cos \alpha \ \cos \beta}

\small\rm { = \cos \alpha \ \cos \beta + \cos \beta \ \cos \gamma + \cos \gamma \ \cos \delta + \cos \delta \ \cos \alpha}

\large\rm { \displaystyle\sum \sin \alpha \ \sin \beta }

\small\rm { = \sin \alpha \ \sin \beta + \sin \beta \ \sin \gamma + \sin \gamma \ \sin \delta + \sin \delta \ \sin \alpha}

\large\rm { \displaystyle\sum \cos \alpha \ \cos \beta - \displaystyle\sum \sin \alpha \ \sin \beta }

\footnotesize\rm{ = ( \cos \alpha \ \cos \beta + \cos \beta \ \cos \gamma + \cos \gamma \ \cos \delta + \cos \delta \ \cos \alpha) - ( \sin \alpha \ \sin \beta + \sin \beta \ \sin \gamma + \sin \gamma \ \sin \delta + \sin \delta \ \sin \alpha)}

\small\rm { = \cos(\alpha + \beta) + \cos(\beta+\gamma) + \cos(\gamma+\delta) + \cos(\delta+\alpha)}

Thinking Process

we know that \large\rm { \big\lgroup \alpha + \beta + \gamma + \delta \big\rgroup = \pi}

So now

\large\rm { \alpha + \beta = \pi -( \delta + \gamma)}

\large\rm { \beta + \gamma = \pi - ( \alpha + \delta)}

\small\rm { = - \cos( \gamma + \delta) - \cos(\alpha + \delta) + \cos( \gamma + \delta) + \cos (\alpha + \delta)}

\small\rm { = \cancel{ - \cos( \gamma + \delta)}  - \cancel{\cos(\alpha + \delta) } + \cancel{ \cos( \gamma + \delta)}  + \cancel{\cos (\alpha + \delta)}}

\large\rm { = 0}

Hence, 0 is the required answer.

Answered by XxMrGlamorousXx
2

we know that \large\rm { \big\lgroup \alpha + \beta + \gamma + \delta \big\rgroup = \pi}

α+β+γ+δ

So now

\large\rm { \alpha + \beta = \pi -( \delta + \gamma)}α+β=π−(δ+γ)

\large\rm { \beta + \gamma = \pi - ( \alpha + \delta)}β+γ=π−(α+δ)

\small\rm { = - \cos( \gamma + \delta) - \cos(\alpha + \delta) + \cos( \gamma + \delta) + \cos (\alpha + \delta)}=−cos(γ+δ)−cos(α+δ)+cos(γ+δ)+cos(α+δ)

\small\rm { = \cancel{ - \cos( \gamma + \delta)} - \cancel{\cos(\alpha + \delta) } + \cancel{ \cos( \gamma + \delta)} + \cancel{\cos (\alpha + \delta)}}=

−cos(γ+δ)

cos(α+δ)

+

cos(γ+δ)

+

cos(α+δ)

\large\rm { = 0}=0

Hence, 0 is the required answer.

Similar questions