Math, asked by Anonymous, 7 months ago

if \large\rm { \normal{f} \ : \ \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}} is differentiable at \large\rm { p} , then  f is continuous at p.​

Answers

Answered by Anonymous
32

Correct Question:

if \large { f \ : \ \mathbb{R}^{\rm{n}} \longrightarrow \mathbb{R}^{\rm{m}}} is differentiable at \large\rm { p} , then prove that  f is continuous at p.

Answer:

from continuity of linear transformations,

\rm{ \displaystyle\lim_{x \to p} f\rm{(x) }= \displaystyle\lim_{\rm{x \to p}} \rm{f(p) + Df(p)(x-p) + E(x-p)}}

\large\rm { = f(p) + Df(p)0 + \displaystyle\lim_{x \to p} \rm{E(x-p)}}

Since f is differentiable at p, we can dismiss the last limit.

\large\rm { \displaystyle\lim_{x \to p} \rm{ E(x-p) } = \displaystyle\lim_{x \to p} \rm{ || x - p || \frac{E(x-p)}{||x-p||}}}

\large\rm { = 0.0}

use magnitude function \large\rm { x \longrightarrow ||x||}

now we conclude that

\large\rm { \displaystyle\lim_{x \to p} f(x) = f(p)}

\large\rm { \therefore } F is continuous at p.

Similar questions