If :
, then The least positive integral value of k is :
a) 3
b) 4
c) 6
d) 7
Answers
Answered by
10
ANSWER:
- The least positive integral value of k is 7.
GIVEN:
TO FIND:
- The least positive integral value of k.
EXPLANATION:
Let cos 2π/7 = x and sin 2π/7 = y.
x² - y² = cos² 2π/7 - sin² 2π/7
cos² x - sin² x = cos 2x
x² - y² = cos 2(2π/7)
2xy = 2 cos 2π/7 sin 2π/7
2 sin x cos x = sin 2x
2xy = sin 2(2π/7)
Let cos 2(2π/7) = a and sin 2(2π/7) = b.
(ax - by) = cos 2(2π/7) cos 2π/7 - sin 2(2π/7) sin 2π/7
Cos x cos y - sin x sin y = cos (x + y)
(ax - by) = cos ( 2(2π/7) + 2π/7)
(ax - by) = cos 3(2π/7)
ay + bx = cos 2(2π/7) sin 2π/7 + sin 2(2π/7) cos 2π/7
Cos x sin y + sin x cos y = sin (x + y)
(ay + bx) = sin (2(2π/7) + 2π/7)
(ay + bx) = sin 3(2π/7)
Let 2π/7 = θ
Similarly for
Substitute θ = 2π/7
Similar questions