Math, asked by Anonymous, 9 months ago

If :
{\left[ \begin{array}{c c} \cos \dfrac{2 \pi}{7} & - \sin \dfrac{2 \pi}{7} \\ \sin \dfrac{2 \pi }{7} & \cos \dfrac{2 \pi}{7} \end{array}\right]}^{k}  = \left[ \begin{array}{c c} 1 &  0\\ 0 & 1 \end{array}\right]
, then The least positive integral value of k is :

a) 3
b) 4
c) 6
d) 7​

Answers

Answered by BrainlyTornado
10

ANSWER:

  • The least positive integral value of k is 7.

GIVEN:

{\left[ \begin{array}{c c} \cos \dfrac{2 \pi}{7} & - \sin \dfrac{2 \pi}{7} \\ \\ \sin \dfrac{2 \pi }{7} & \cos \dfrac{2 \pi}{7} \end{array}\right]}^{k} = \left[ \begin{array}{c c} 1 & 0\\ 0 & 1 \end{array}\right]

TO FIND:

  • The least positive integral value of k.

EXPLANATION:

Let\ A= \left[ \begin{array}{c c} \cos \dfrac{2 \pi}{7} & - \sin \dfrac{2 \pi}{7} \\\\ \sin \dfrac{2 \pi }{7} & \cos \dfrac{2 \pi}{7} \end{array}\right]

Let cos 2π/7 = x and sin 2π/7 = y.

\left[ \begin{array}{c c} x & - y\\ \\  y& x \end{array}\right]\left[ \begin{array}{c c} x & - y\\ \\  y& x \end{array}\right]

  \left[ \begin{array}{c c}  {x}^{2}  -  {y}^{2}  & - xy - xy\\ \\  xy + xy&  -  {y}^{2}  +  {x}^{2} \end{array}\right]

\left[ \begin{array}{c c}  {x}^{2}  -  {y}^{2}  & -2xy\\ \\ \\  2xy&    {x}^{2}-  {y}^{2} \end{array}\right]

x² - y² = cos² 2π/7 - sin² 2π/7

cos² x - sin² x = cos 2x

x² - y² = cos 2(2π/7)

2xy = 2 cos 2π/7 sin 2π/7

2 sin x cos x = sin 2x

2xy = sin 2(2π/7)

\left[ \begin{array}{c c} cos \ 2  \left(\dfrac{2 \pi}{7} \right)   & -sin \ 2\left(\dfrac{2 \pi}{7} \right)\\ \\ \\ sin \ 2\left(\dfrac{2 \pi}{7} \right)&  cos \ 2\left(\dfrac{2 \pi}{7} \right) \end{array}\right]

Let cos 2(2π/7) = a and sin 2(2π/7) = b.

\left[ \begin{array}{c c}  a  &  - b\\ \\  b&   a  \end{array}\right] \left[ \begin{array}{c c} x &  - y\\ \\  y&  x \end{array}\right]

\left[ \begin{array}{c c}  ax - by  &   - ay - bx\\ \\ bx + ay &    - by + ax \end{array}\right]

\left[ \begin{array}{c c}  ax - by  &   - (ay  + bx)\\ \\ bx + ay & ax - by \end{array}\right]

(ax - by) = cos 2(2π/7) cos 2π/7 - sin 2(2π/7) sin 2π/7

Cos x cos y - sin x sin y = cos (x + y)

(ax - by) = cos ( 2(2π/7) + 2π/7)

(ax - by) = cos 3(2π/7)

ay + bx = cos 2(2π/7) sin 2π/7 + sin 2(2π/7) cos 2π/7

Cos x sin y + sin x cos y = sin (x + y)

(ay + bx) = sin (2(2π/7) + 2π/7)

(ay + bx) = sin 3(2π/7)

\left[ \begin{array}{c c} cos \ 3 \left(\dfrac{2 \pi}{7} \right)   & -sin \ 3\left(\dfrac{2 \pi}{7} \right)\\ \\ \\ sin \ 3\left(\dfrac{2 \pi}{7} \right)&  cos \ 3\left(\dfrac{2 \pi}{7} \right) \end{array}\right]

Let 2π/7 = θ

Let\ A= \left[ \begin{array}{c c} \cos \ \theta & - \sin\ \theta \\ \\ \sin\ \theta & \cos\ \theta \end{array}\right]

Let\ A^2= \left[ \begin{array}{c c} \cos \ 2\theta & - \sin\ 2\theta \\ \\ \sin\ 2\theta & \cos\ 2\theta \end{array}\right]

Let\ A^3= \left[ \begin{array}{c c} \cos \ 3\theta & - \sin\ 3\theta \\ \\ \sin\ 3\theta & \cos\ 3\theta \end{array}\right]

Similarly for

Let\ A^7= \left[ \begin{array}{c c} \cos \ 7\theta & - \sin\ 7\theta \\ \\ \sin\ 7\theta & \cos\ 7\theta \end{array}\right]

Substitute θ = 2π/7

\left[ \begin{array}{c c} cos \ 7 \left(\dfrac{2 \pi}{7} \right)   & -sin \ 7\left(\dfrac{2 \pi}{7} \right)\\ \\ \\ sin \ 7\left(\dfrac{2 \pi}{7} \right)&  cos \ 7\left(\dfrac{2 \pi}{7} \right) \end{array}\right]

\left[ \begin{array}{c c} cos \ 2 \pi & -sin \ 2 \pi\\ \\ \\ sin \ 2 \pi&  cos \ 2 \pi \end{array}\right]

\left[ \begin{array}{c c}1 & 0\\ \\ 0&1 \end{array}\right]

{\left[ \begin{array}{c c} \cos \dfrac{2 \pi}{7} & - \sin \dfrac{2 \pi}{7} \\ \\ \sin \dfrac{2 \pi }{7} & \cos \dfrac{2 \pi}{7} \end{array}\right]}^7 = \left[ \begin{array}{c c} 1 & 0\\ \\ 0 & 1 \end{array}\right]

Similar questions