Math, asked by karankumar9868, 1 year ago

If  \left[\begin{array}{ccc}-2&0\\4&5\end{array}\right] \times \left[\begin{array}{ccc}0&4\\-3&2\end{array}\right] -2M= \left[\begin{array}{ccc}6&-2\\3&5\end{array}\right] find the matrix.

Answers

Answered by ayushnishad16p6m8n9
0
here is your answer
Attachments:
Answered by Avengers00
8
\underline{\underline{\huge{\textbf{Solution:}}}}

Given,

 \left[\begin{array}{ccc}-2&0\\4&5\end{array}\right] \times \left[\begin{array}{ccc}0&4\\-3&2\end{array}\right] -2M= \left[\begin{array}{ccc}6&-2\\3&5\end{array}\right]

\underline{\large{\textsf{Step-1:}}}
Consider LHS
 \left[\begin{array}{ccc}-2&0\\4&5\end{array}\right] \times \left[\begin{array}{ccc}0&4\\-3&2\end{array}\right] -2M

\underline{\large{\textsf{Step-2:}}}
Multiply Matrices

 \left[\begin{array}{ccc}(-2)\times0)+(0\times(-3)&(-2\times4)+(0\times2)\\(4\times0)+(5\times(-3)&(4\times4)+(5\times2)\end{array}\right]- 2M

 \left[\begin{array}{ccc}(0)+(0)&(-8)+(0)\\(0)+(-15)&(16)+(10)\end{array}\right]- 2M

 \left[\begin{array}{ccc}0&-8\\-15&26\end{array}\right]- 2M

\underline{\large{\textsf{Step-3:}}}
Equate it to RHS

 \left[\begin{array}{ccc}0&-8\\-15&26\end{array}\right]- 2M = \left[\begin{array}{ccc}6&-2\\3&5\end{array}\right]

\implies 2M = \left[\begin{array}{ccc}0&-8\\-15&26\end{array}\right] - \left[\begin{array}{ccc}6&-2\\3&5\end{array}\right]

\underline{\large{\textsf{Step-4:}}}
Subtract the Matrices

\implies 2M = \left[\begin{array}{ccc}0-6&-8-(-2)\\-15-3&26-5\end{array}\right]

\implies 2M = \left[\begin{array}{ccc}-6&-6\\-18&21\end{array}\right]

\underline{\large{\textsf{Step-5:}}}
Divide with 2 on both sides

\implies M = (\frac{1}{2})\left[\begin{array}{ccc}-6&-6\\-18&21\end{array}\right]

\implies M = \left[\begin{array}{ccc}\frac{-6}{2}&\frac{-6}{2}\\\frac{-18}{2}&\frac{21}{2}\end{array}\right]

\implies M =(\frac{3}{2}) \left[\begin{array}{ccc}-6&-6\\-6&7\end{array}\right]
Similar questions