Math, asked by SharmaShivam, 9 months ago

If \lim_{x \to 0} \left(1+ax+bx^2\right)^{\frac{2}{x}}\:=\:e^3 , find a & b

Answers

Answered by Steph0303
7

Answer:

Given:

\lim_{x \to 0}\: (1 + ax + bx^2 )^{2/x} = e^3

On substituting x = 0, we get the form: 1^\infty

This indeterminate form is usually evaluated as:

\lim_{x \to 0}\: (f(x))^{g(x)} = 1^\infty \:\: \implies\:\:  \lim_{x \to 0}\:\:e^{ g(x) [ f(x) - 1 ]}

Converting it to the form mentioned above we get:

\lim_{x \to 0}\:\: e^{ (2/x)\:[ 1 + ax + bx^2 - 1 ]} = e^3\\\\\\\text{Multiplying the powers we get:}\\\\\\\implies \dfrac{ 2}{x} ( ax ) + \dfrac{2}{x} ( bx^2)\:\; \implies \boxed{2a + 2bx}

\text{Hence the new form would be:}\\\\\\\implies  \lim_{x \to 0} e^{ (2a + 2bx )} = e^3\\\\\\\text{Applying limts we get:}\\\\\\\implies e^{(2a + 2b(0))} = e^3\\\\\\\implies e^{2a} = e^3\\\\\\\implies 2a = 3\:\: \implies \boxed{a = \dfrac{2}{3}}

Since we get 'b' to be independent, 'b' can take all real values.

Answered by Anonymous
2

 \underbrace{ \boxed{  \underline{ \blue{ \underline{\tt  \red{Solution }}}}}}

 \green{ \tt we \: have} \\  \tt \lim _{x \rightarrow0}(1 + ax +  {bx}^{2}  {)}^{ \frac{2}{x} }  =  {e}^{3}  \:  \: ( {1}^{\infin}  form) \\  \tt \implies (  \lim _{x \rightarrow0}(1 + ax +  {bx}^{2}  {)}^{ \frac{1}{ax +  {bx}^{2} } }  {)}^{ \frac{2(ax +  {bx}^{2}) }{x} }  =  {e}^{3}  \\   \tt\implies  {e}^{2a}  =  {e}^{ 3}  \\  \tt \implies 2a = 3 \\  \tt \implies a =  \frac{3}{2}  \: and \: b ∈R. \\  \\  \\ \boxed{ \tt a =  \frac{3}{2}  \: and \: b ∈R }

Similar questions