Math, asked by guptaananya2005, 16 days ago

If

lim \: x \to \: a \: (f(x) + g(x)) = 6  \\ \: and \:  \\ lim \: x \to \: a \: (f(x)  -  g(x)) = 4 \\ find \: lim \: x \to \: a \: f(x)g(x)

Spammers please let far away

Quality answer needed

Moderators, stars and best user.

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\displaystyle\lim_{x \to a}[f(x) + g(x)] = 6

can be rewritten as

\rm :\longmapsto\:\displaystyle\lim_{x \to a}f(x) + \displaystyle\lim_{x \to a}g(x) = 6 -  -  - (1)

Also, given that

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to a}[f(x) - g(x)] = 4}

can be rewritten as

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to a}f(x) - \displaystyle\lim_{x \to a}g(x) = 4 -  -  - (2)}

On adding equation (1) and equation (2), we get

\rm :\longmapsto\:2\displaystyle\lim_{x \to a}f(x) = 10

\rm \implies\:\boxed{ \tt{ \: \displaystyle\lim_{x \to a}f(x) = 5 \: }} -  -  - (3)

On Subtracting equation (2) from equation (1), we get

\rm :\longmapsto\:2\displaystyle\lim_{x \to a}g(x) = 2

\rm \implies\:\boxed{ \tt{ \: \displaystyle\lim_{x \to a}g(x) = 1 \: }} -  -  - (4)

Now, Consider

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to a}f(x)g(x)}

\rm \:  =  \: \displaystyle\lim_{x \to a}f(x) \:  \times  \: \displaystyle\lim_{x \to a}g(x)

\rm \:  =  \: 5 \times 1

\rm \:  =  \: 5

Hence,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to a}f(x)g(x)} = 5 \: }}

Similar questions