Math, asked by rekhanandanwar88, 9 months ago

if
 log_{2}(3) = a \: then \: the \: value \: of \:  log_{2}(12) is

Answers

Answered by Asterinn
3

Given :

log_{2}(3) = a

To find :

log_{2}12

Concept used :

 log_{b}(a \times c)  =  log_{b}(a) +  log_{b}(c)

 log_{a}(a)  = 1

Solution :

log_{2}(12)  =   log_{2}(3 \times 4)

log_{2}(3 \times 4) =  log_{2}(3)  +  log_{2}(4)

log_{2}(12) = log_{2}(3)  +  log_{2}(4)

It is given that :-

log_{2}(3) = a

log_{2}(12) = a +  log_{2} {(2)}^{2}

log_{2}(12) = a + 2 log_{2} (2)

now :-

 log_{2}(2)  = 1

log_{2}(12) = a +( 2  \times 1)

log_{2}(12) = a +2

Answer :

a +2

_______________________

Learn more :

log_{b}(a \times c)  =  log_{b}(a) +  log_{b}(c)

log_{b}( \frac{a}{c} )  =  log_{b}(a)  -  log_{b}(c)

log_{b}( {a}^{c} )  =  c \: log_{b}( {a} )

log_{a}(a)  = 1

________________________

Similar questions