Math, asked by shivam6284, 6 months ago

if
 log_{a}(243 \times  \sqrt[5]{9}  = 2.7
Then find the value of a.​

Answers

Answered by CrEEpycAmp
7

\underline{\huge{Answer:-}}

Step-by-step explanation:

We are given that

 \implies \:  \large \mathtt{ log_{a}(243 \times  \sqrt[5]{9} = 2.7 } \\  \\  \ \: \:  \:  \:  \:  \:  \:  \:  \:  \:   \large \mathtt{ log_{a}( {3}^{5} \times ( {3}^{2}) {}^{ \frac{1}{5} }   =  \frac{27}{10}  } \\

 \implies \:  \large \mathtt{ log_{a}( {3}^{5} \times  {3}^{ \frac{2}{5} }) =  \frac{27}{10}    } \\

 \implies  \:   \large \mathtt{ log_{a}( {3}^{5 +  \frac{2}{5} }) =  \frac{27}{10}   } \\

 \implies \:  \large \mathtt{ log_{a}( {3}^{ \frac{27}{5} })  = \frac{27}{10}  }  \\

 \implies \:  \large \mathtt{ \frac{27}{5} log_{a}3 =  \frac{27}{10}   } \\

 \implies \:  \large \mathtt{ log_{a}(3) =  \frac{27}{10} \times  \frac{5}{27}   } \\

 \implies \: \large \mathtt{ log_{a}(3) =  \frac{1}{2} }  \\

 \implies \:  \large \mathtt{ {a}^{ \frac{1}{2} }  = 3} \\

Now square both sides

 \implies \:  \large \mathtt{a =  {3}^{2} = 9 } \\

Answered by LovelysHeart
52

Answer:

\underline{\huge{Answer:-}}

We are given that

\begin{gathered} \implies \: \large \mathtt{ log_{a}(243 \times \sqrt[5]{9} = 2.7 } \\ \\ \ \: \: \: \: \: \: \: \: \: \: \large \mathtt{ log_{a}( {3}^{5} \times ( {3}^{2}) {}^{ \frac{1}{5} } = \frac{27}{10} } \\ \end{gathered}

\begin{gathered} \implies \: \large \mathtt{ log_{a}( {3}^{5} \times {3}^{ \frac{2}{5} }) = \frac{27}{10} } \\ \end{gathered}

\begin{gathered} \implies \: \large \mathtt{ log_{a}( {3}^{5 + \frac{2}{5} }) = \frac{27}{10} } \\ \end{gathered}

\begin{gathered} \implies \: \large \mathtt{ log_{a}( {3}^{ \frac{27}{5} }) = \frac{27}{10} } \\ \end{gathered}

\begin{gathered} \implies \: \large \mathtt{ \frac{27}{5} log_{a}3 = \frac{27}{10} } \\ \end{gathered}

\begin{gathered} \implies \: \large \mathtt{ log_{a}(3) = \frac{27}{10} \times \frac{5}{27} } \\ \end{gathered}

\begin{gathered} \implies \: \large \mathtt{ log_{a}(3) = \frac{1}{2} } \\ \end{gathered}

\begin{gathered} \implies \: \large \mathtt{ {a}^{ \frac{1}{2} } = 3} \\ \end{gathered}

Now square both sides

\begin{gathered} \implies \: \large \mathtt{a = {3}^{2} = 9 } \\ \end{gathered}

Similar questions