Math, asked by Anonymous, 8 months ago

IF
 {m}^{2}  +  {m}^{ '2}  + 2mm' \cos \theta = 1 {n }^{2}  {n'}^{2}  + 2nn' \cos \theta = 1 and  \: mn + m'n' + (mn' + m'n) \cos \theta = 0 \: prove \: that \:  {m}^{2}  +  {n}^{2}  =  { \cosec }^{2}  \theta
fast plz ​

Answers

Answered by Anonymous
20

 \boxed {\mathbb{ \red{G} \blue{I} \pink{V} \purple{E} \orange{ N}}}

 {m}^{2}  +  {m '  }^{2}  + 2mm'  \cos \theta = 1

 \boxed {\mathtt{ \red S \blue O \orange L \purple U \green T \pink I \red ON}}

 {m'}^{2}  + 2mm' \cos \theta = 1 -  {m}^{2}

add \:  {m}^{2}  { \cos }^{2}  \theta  \: both \: sides

 {m ' }^{2}  + 2mm' +  {m}^{2}  { \cos }^{2}  \theta = 1 -  {m}^{2}  +  {m}^{2}  { \cos}^{2}  \theta

(m' +  {m}^{2}   { \cos }^{2}  \theta) = 1 -  {m}^{2}   { \sin}^{2}  \theta...(i)

 {n}^{2}  +  {n' }^{2}  + 2nn' \cos \theta = 1 \:  \:  \:  \:   \: \: (n' + n \cos \theta {)}^{2}  = 1 -  {n}^{2}   { \sin }^{2}  \theta.....(ii)

eq(i) \times (ii)

(m' + m \cos \theta {)}^{2} (n' + n \cos \theta {)}^{2}  = (1 -  {m}^{2}  { \sin }^{2}  \theta)(1 -  {n}^{2}   { \sin }^{2}  \theta)(1 -  {n}^{2}  { \sin }^{2}  \theta).....(iii)

(m' + m \cos \theta) (n' + n \cos \theta)  = m'n' + (m'n + mn') \cos \theta + mn  \: { \cos }^{2}  \theta....(iv)

but  \: mn + m'n' + (mn' + nm') \cos \theta = 1 \: in \: eq(iv)

(m' + m \cos \theta)(n'n \cos \theta) = 1 - mn + mn { \cos }^{2}  \theta

 =  > 1 - mn(1 -  { \cos }^{2}  \theta)

 =  > 1 - mn \:  { \sin }^{2}  \theta...(v)

eq(v {)}^{2}  \: we \: get

(m' + m \cos \theta)(n' + n \cos \theta) = 1 - mn + mn \:  {  \sin}^{2}  \theta {)}^{2} .....(vi)

from \: eq(iii) \: and \: (vi)

 {m}^{2}  {n}^{2}  { \sin}^{2}  \theta = (1 -  {m}^{2}  { \sin }^{2}  \theta)(1 -  {n}^{2}  { \sin }^{2}  \theta)

  \cancel{{m}^{2}   {n}^{2}  { \sin }^{4}  \theta }= 1 -  {n}^{2}  { \sin }^{2}  \theta -  {m}^{2}  { \sin}^{2}  \theta +   \cancel{ {m}^{2}   {n}^{2}  { \sin }^{4} }

 {m}^{2}  { \sin }^{2}  \theta +  {m}^{2}  { \sin }^{2}  \theta = 1

 { \sin }^{2}  \theta( {m}^{2}  +  {n}^{2} ) = 1

 {m}^{2}  +  {n}^{2}  =  \frac{1}{ { \sin }^{2} \theta }

 \boxed{ {m}^{2}  +  {n}^{2}  =   { \cosec }^{2}  \theta}

HENCE PROVED.........

Answered by Anonymous
9

The given equation can be written as

(m′+mcosθ2)+m2−m2cos2θ=1 </p><p></p><p>

Similarly

 n′+ncosθ)2=1−n2sin2θ</p><p></p><p>

Now

(m′+mcosθ)=(n′+ncosθ)</p><p></p><p>

=−mn+mncos2θ </p><p></p><p>

By Given Relation

=−mn(1−cos2θ)=−mnsin2θ</p><p></p><p>

Now squaring both sides, we get

or (m′+mcosθ)2(n′+ncosθ)2=m2n2sin4θ</p><p></p><p>

Hence substituting from (1) and (2) in (3), we get

(1−m2sin2θ)(1−n2sin2θ)=m2n2sin4θ</p><p></p><p>

or =(m2+n2)sin2θ=1 i.e. =m2+n2=csc2θ</p><p></p><p>

Hence,We proved this⬆⬆

Similar questions