Math, asked by mitulshethwala, 2 months ago

if
m   \cos( \alpha )     - n \sin( \alpha ) = p \:
then prove that
m \sin( \alpha )  + n \cos(  \alpha  )  =  +  -  \sqrt{m {}^{2}  + n {}^{2} - p {}^{2}  }

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Identities Used :-

\boxed{ \sf{ \:  {(x - y)}^{2} =  {x}^{2}  +  {y}^{2}  - 2xy}}

\boxed{ \sf{ \:  {(x  +  y)}^{2} =  {x}^{2}  +  {y}^{2}   +  2xy}}

\boxed{ \sf{ \:  {sin}^{2}x +  {cos}^{2}x = 1}}

\boxed{ \sf{ \:  {sin}^{2}x = 1 -  {cos}^{2}x}}

\boxed{ \sf{ \:  {cos}^{2}x = 1 -  {sin}^{2}x}}

\large\underline{\sf{Given- }}

\rm :\longmapsto\:mcos \alpha  - nsin\alpha  = p

On squaring both sides, we get

\rm :\longmapsto\:(mcos \alpha  - nsin\alpha)^{2}   = p^{2}

\rm :\longmapsto\: {m}^{2} {cos}^{2}\alpha  +  {n}^{2} {sin}^{2}\alpha  - 2mncos\alpha sin\alpha  =  {p}^{2}

\rm :\longmapsto\: {m}^{2}(1 -  {sin}^{2}\alpha) + {n}^{2}(1 - {cos}^{2}\alpha)  - 2mncos\alpha sin\alpha  =  {p}^{2}

\rm :\longmapsto\: {m}^{2} -   {m}^{2} {sin}^{2}\alpha+ {n}^{2}-  {n}^{2} {cos}^{2}\alpha- 2mncos\alpha sin\alpha  =  {p}^{2}

\rm :\longmapsto\:  - {m}^{2} {sin}^{2}\alpha-  {n}^{2} {cos}^{2}\alpha- 2mncos\alpha sin\alpha  =  {p}^{2} -  {m}^{2} -  {n}^{2}

\rm :\longmapsto\: {m}^{2} {sin}^{2}\alpha + {n}^{2} {cos}^{2}\alpha +  2mncos\alpha sin\alpha  =   - {p}^{2} +  {m}^{2} +  {n}^{2}

\rm :\longmapsto\:(msin\alpha  + ncos\alpha )^{2} =  {m}^{2} +  {n}^{2}  -  {p}^{2}

\rm :\longmapsto\:msin\alpha  + ncos\alpha  = \:  \pm \:  \sqrt{{m}^{2} +  {n}^{2}  -  {p}^{2}}

Hence, proved

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions