Math, asked by nafisa77, 2 months ago

if
m +  \frac{1}{m}  = 4
then what is the value of
m3 +  \frac{1}{ {m}^{3} }

Answers

Answered by VεnusVεronίcα
29

\large \bf{Given...}

Given that m+\dfrac{1}{m}=4.

 \\

\large \bf{To~ find...}

We have to find m^3+\dfrac{1}{m}.

 \\

\large\bf{Solution...}

  • We have the equation :

   \:  \:  \:   \: : \implies m +  \dfrac{1}{m}  = 4

  • Now, we'll cube it on both sides :

 \:  \:  \:  \:  :  \implies {(m +  \dfrac{1}{m} })^{3}  =  {(4)}^{3}

  • Using the identity : a^3+b^3=(a^3+b^3)+3ab(a+b) :

 \:  \:  \:  \:  :  \implies  {m}^{3}  +  { \dfrac{1}{m} }^{3}   + 3(m \times  \dfrac{1}{m} )(m +  \dfrac{1}{m} ) = 64

 \:  \:  \:  \:  :  \implies {m}^{3}  +  \dfrac{1}{ {m}^{3} }   +  3( \cancel m  +  \dfrac{1}{ \cancel m} )(4)  = 64 \:  \:  \: \:  \:   \:  \: \bf{( \because \: m +  \dfrac{1}{m}  = 4)}

 \:  \:  \:  \:  :  \implies {m}^{3}  +  \dfrac{1}{ {m}^{3} }   +  3(1)(4) = 64

 \:  \:  \:  \:  :  \implies {m}^{3}  +  \dfrac{1}{ {m}^{3} }  +  12 = 64

 \:  \:  \:  \:  :  \implies {m}^{3} +   \dfrac{1}{ {m}^{3} }  = 64 - 12

 \:  \:  \:  \:  :   \implies {m}^{3}  +  \dfrac{1}{ {m}^{3} }  = 52

 \\

_______________________

\bf {Therefore,~ m^3+\dfrac{1}{m^3}=52,~when~ m+\dfrac{1}{m}=4}.

Similar questions