Math, asked by MaskHater4, 5 months ago

If \mathsf{\alpha, \beta, \gamma} are the roots of \mathsf{{x}^{3}+p{x}^{2}+qx+r = 0} the form the monic cubic equation whos roots are \mathsf{\alpha ( \beta + \gamma ), \: \beta ( \gamma + \alpha ), \: \gamma( \alpha + \beta)}

Answers

Answered by ImSuperHero
223

Since \mathsf{\alpha ,  \beta , \gamma} be the roots of given equation, we have

\alpha  + \beta   +  \gamma \:  =  - p

\alpha \beta +   \beta \gamma + \gamma\alpha = q

  \alpha  \beta \gamma \:  =  - r

Let

  \sum\alpha( \beta +  \gamma) \:  = s_1

 \sum \: \alpha \beta( \beta  +  \gamma)( \gamma + \alpha ) = s_2

and \:  \: \alpha \beta \gamma( \beta +  \gamma)( \gamma +  \alpha)( \alpha +  \beta) = s_ 3

Then Required equation is \mathsf{  {x}^{3}  - S_1 {x}^{2}  + S_2  x - S_3}

Now we find \mathsf{  s_1 , s_2 \:  and \: s_3 } in terms of p,q and r.

s_1 \:  =  \:   \sum\alpha( \beta +  \gamma) \: =  \sum( \alpha \beta +  \alpha \gamma)

 \:  =  \sum \alpha \beta +  \sum \alpha \gamma

 =  \sum \alpha \beta \:  +  \: \sum \alpha \beta

 =  2\sum \alpha \beta = 2q

_________

  s_2  =  \: \sum \: \alpha \beta( \beta  +  \gamma)( \gamma + \alpha )

 =  \sum \alpha \beta( - p -  \alpha)( - p -  \beta)

 =  \sum \alpha \beta  \Big \{ {p}^{2}  + ( \alpha +  \beta)p +  \alpha \beta \Big \}

 =  \sum \alpha  \beta\Big \{ {p}^{2}  - (p +  \gamma)p +  \alpha \beta \Big \}

 =  \sum \alpha \beta \Big \{ -  \gamma  p +  \alpha \beta \Big \}

 =  \sum { (\alpha}^{2}  { \beta}^{2}  -  \alpha \beta \gamma p) =  \sum { \alpha}^{2}  { \beta}^{2}  - p \sum \alpha \beta \gamma

 =  \sum  { \alpha}^{2}  { \beta}^{2}  - p( - 3r)

 =  {( \alpha \beta  +  \beta \gamma +  \gamma \alpha) }^{2}  - 2 \alpha \beta \gamma( \alpha +  \beta +  \gamma) + 3pr

 =  {q}^{2}  - 2pr + 3pr

 =  {q}^{2}  + pr

___________

s_ 3 = \alpha \beta \gamma( \beta +  \gamma)( \gamma +  \alpha)( \alpha +  \beta)

  =  - r( - p  -  \gamma)( - p -  \alpha)( - p  -  \beta)

 = r(p +  \gamma)(p  + \alpha)(p +  \beta)

 = r[ {p}^{3}  + ( \alpha  +  \beta +  \gamma) {p}^{2}  + ( \alpha \beta +  \beta \gamma +  \gamma \alpha)p \:  +  \alpha \beta \gamma ]

 = r[ {p}^{3}  -  {p}^{3}  + pq - r ]

 = r(pq - r)

Therefore the required equation is :-

 {x}^{3}  - 2q {x}^{2}  + ( {q}^{2}  + pr)x - r(pq - r) = 0

Answered by Jaiganesha
0

If \mathsf{\alpha, \beta, \gamma} are the roots of \mathsf{{x}^{3}+p{x}^{2}+qx+r = 0} the form the monic cubic equation whos roots are \mathsf{\alpha ( \beta + \gamma ), \: \beta ( \gamma + \alpha ), \: \gamma( \alpha + \beta)}

happy days.... happy days

Similar questions