Math, asked by Nirak677, 2 months ago

If \mathsf{\;y = f(x) = \dfrac{ax - b}{bx - a}} then show that x = f(y) ​

Answers

Answered by brainlygirl8793
10

{\huge{\red{\ddot{\smile}}}}{\huge{\red{\ddot{\smile}}}}{\huge{\red{\ddot{\smile}}}} \\  \\  \\  \huge{\pink{\mathfrak{\overbrace{\pink{\underbrace{heya \: mate}}}}}}

MARK ME BRAINLIEST MATE

Attachments:
Answered by Anonymous
389

Given :-

  • \mathsf{\;y = f(x) = \dfrac{ax - b}{bx - a}}

To Prove :-

  • \mathsf{x = f(y)}

Solution :-

We need to replace x with y.

\mathsf \red {{:\implies f(y) = \dfrac{ay - b}{by - a}}}\\\\

\mathsf{But,\;y = \dfrac{ax - b}{bx - a}}\\\\

Substituting the value of y in f(y), We get :

\mathsf{:\implies f(y) = \dfrac{a\bigg(\dfrac{ax - b}{bx - a}\bigg) - b}{b\bigg(\dfrac{ax - b}{bx - a}\bigg) - a}}\\\\

\mathsf{:\implies f(y) = \dfrac{\dfrac{a(ax - b)}{bx - a} - b}{\dfrac{b(ax - b)}{bx - a} - a}}\\\\

\mathsf{:\implies f(y) = \dfrac{\dfrac{a(ax - b) - b(bx - a)}{bx - a}}{\dfrac{b(ax - b) - a(bx - a)}{bx - a}}}\\\\

\mathsf{:\implies f(y) = \dfrac{a(ax - b) - b(bx - a)}{b(ax - b) - a(bx - a)}}\\\\

\mathsf{:\implies f(y) = \dfrac{a^2x - ab - b^2x + ab}{abx - b^2 - abx + a^2}}\\\\

\mathsf{:\implies f(y) = \dfrac{a^2x - b^2x}{a^2 - b^2}}\\\\

\mathsf{:\implies f(y) = \dfrac{x(a^2 - b^2)}{a^2 - b^2}}\\\\

\mathsf\red {{:\implies f(y) = x}}\\\\

  • Hence, Showed!
Similar questions