Math, asked by michaelgimmy, 6 hours ago

If  \mathtt{x = 1 - \sqrt2} , then Find the Value of \mathtt{\Big(x -\dfrac{1}{x}\Big)^2}

Answers

Answered by Anonymous
34

Solution -

We have,

  • \sf{x = 1 - \sqrt{2}}

To find :-

  • \sf{\bigg( x - \dfrac{1}{x} \bigg)^2}

Firstly, we will solve the bracket.

\tt:\implies\: \: \: \: \: \: \: \: {\bigg( \dfrac{x^2 - 1}{x} \bigg)^2}

Now, put the value of x.

\tt:\implies\: \: \: \: \: \: \: \: {\bigg( \dfrac{(1 - \sqrt{2})^2 - 1}{1 - \sqrt{2}} \bigg)^2}

\tt:\implies\: \: \: \: \: \: \: \: {\bigg( \dfrac{1 + 2 - 2 \sqrt{2} - 1}{1 - \sqrt{2}} \bigg)^2}

\tt:\implies\: \: \: \: \: \: \: \: {\bigg( \dfrac{2 - 2\sqrt{2}}{1 - \sqrt{2}} \bigg)^2}

We will open the brackets now by squaring the whole term.

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{(2 - 2\sqrt{2})^2}{(1 - \sqrt{2})^2}}

Using identity

  • (a - b)² = a² + b² - 2ab

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{(2)^2 + (2\sqrt{2})^2 - 8\sqrt{2}}{(1)^2 + (\sqrt{2})^2 - 2\sqrt{2}}}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{4 + 8 - 8 \sqrt{2}}{1 + 2 - 2 \sqrt{2}}}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{12 - 8\sqrt{2}}{3 - 2\sqrt{2}}}

Rationalising the denominator

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{12 - 8\sqrt{2}}{3 - 2\sqrt{2}} \times \dfrac{3 + 2 \sqrt{2}}{3 + 2\sqrt{2}}}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{(12 - 8\sqrt{2}) (3 + 2\sqrt{2})}{(3)^2 - (2\sqrt{2})^2}}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{36 + 24\sqrt{2} - 24\sqrt{2} - 32}{9 - 8}}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{36 - 32}{1}}

\frak:\implies\: \: \: \: \: \: \: \: {\underline{\boxed{\purple{4}}}} \star

\dag\small{\underline{\sf{Hence,\: the\: required\: value\: is\: 4.}}}

Answered by StormEyes
15

Solution!!

x = 1 - √2

To find :- (x - 1/x)²

\sf \left(1-\sqrt{2}-\dfrac{1}{1-\sqrt{2}}\right)^{2}

Rationalise the denominator.

\sf = \left(1-\sqrt{2}-\left(\dfrac{1}{1-\sqrt{2}}\times \dfrac{1+\sqrt{2}}{1+\sqrt{2}}\right)\right)^{2}

\sf = \left(1-\sqrt{2}-\left(\dfrac{1(1+\sqrt{2})}{(1-\sqrt{2})(1+\sqrt{2})}\right)\right)^{2}

Use the identity → (a - b)(a + b) = a² - b².

\sf = \left(1-\sqrt{2}-\left(\dfrac{1+\sqrt{2}}{(1)^{2}-(\sqrt{2})^{2}}\right)\right)^{2}

\sf = \left(1-\sqrt{2}-\left(\dfrac{1+\sqrt{2}}{1-2}\right)\right)^{2}

\sf = \left(1-\sqrt{2}-\left(\dfrac{1+\sqrt{2}}{-1}\right)\right)^{2}

\sf = \left(1-\sqrt{2}-\left(-\left(1+\sqrt{2}\right)\right)\right)^{2}

Opening the brackets and changing the sign.

\sf = \left(1-\sqrt{2}+\left(1+\sqrt{2}\right)\right)^{2}

\sf = \left(1-\sqrt{2}+1+\sqrt{2}\right)^{2}

Grouping the like term.

\sf = \left(1+1-\sqrt{2}+\sqrt{2}\right)^{2}

\sf = \left(1+1\right)^{2}

\sf = \left(2\right)^{2}

\sf = 4

Similar questions