Math, asked by Mihir1001, 9 months ago

If  {}^{n} C_1, {}^{n} C_2  and  {}^{n} C_3 are in AP.Then, find the value of  {}^{n} C_1 +  {}^{n} C_2 +  {}^{n} C_3

Hints :—

1. r! = 1 \times 2 \times 3 \times ......... r

2. \large{ {}^{n} C_r = \frac{n!}{(n - r)! \times r!} }

Correctly explained answer to be BRAINLIEST. ​

Answers

Answered by Anonymous
0

\huge\boxed{Answer}

nC1 , nC2 & nC3 are in A.P.

So ,

2 × nC2 = nC1 + nC3 --------(1)

Now ,

nC1 + nC2 + nC3

nC2 + (nC1 + nC3)

From eq (1) -

nC2 + 2 × nC2

3 × nC2

We know

[ nCr = n! / r! (n - r)! ]

3 × n! / (2! × (n - 2)! )

3 × [ n(n - 1) (n - 2)! / 2 × (n-2)! ]

3 × n(n - 1) / 2

3n(n - 1) / 2

Answered by pulakmath007
20

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1. Three terms a, b, c are said to be in Arithmetic Progression ( AP) if

2b = a + c

2.

r! = 1 \times 2 \times 3 \times ......... \times  r

3.

\large{ {}^{n} C_r = \frac{n!}{(n - r)! \times r!} }

GIVEN

{}^{n} C_1, {}^{n} C_2  \: and  \: {}^{n} C_3  \: are  \: in  \: AP

TO DETERMINE

{}^{n} C_1 + {}^{n} C_2 +  {}^{n} C_3

EVALUATION

Since

{}^{n} C_1, {}^{n} C_2  \: and  \: {}^{n} C_3  \: are  \: in  \: AP

So

2  \times {}^{n} C_2   =  \: {}^{n} C_1 \:  +  \: {}^{n} C_3 

 \displaystyle \: 2 \times  \frac{n!}{(n - 2)! \times 2!} = \frac{n!}{(n - 1)! \times 1!}  + \frac{n!}{(n - 3)! \times 3!}

 \displaystyle \:  \implies \: 2  \times  \frac{n(n - 1)}{2}  = n + \frac{n(n - 1)(n - 2)}{6}

 \displaystyle \:  \implies \:   (n - 1)  = 1 + \frac{(n - 1)(n - 2)}{6}  \: ( \because \: n \ne \: 0)

 \implies \: 6n - 6 = 6 +  {n}^{2}  - 3n + 2

 \implies \:  {n}^{2}  - 9n + 14 = 0

 \implies \:  {n}^{2}  - 2n  - 7n+ 14 = 0

 \implies \:  n(n - 2) - 7(n - 2) = 0

 \implies \:  (n - 2) (n - 7) = 0

So

either \: (n - 2)  = 0 \:  \: or \:  \:  (n - 7) = 0

so \: n \:  = 2 \:  \: or \: n \:  = 7

since \:  \: {}^{n} C_3 \:  \: exists \:  \: so \:  \: n \:  \geqslant 3

So

n \ne \: 2

So

n = 7

RESULT

{}^{n} C_1 + {}^{n} C_2 +  {}^{n} C_3

 = {}^{7} C_1 + {}^{7} C_2 +  {}^{7} C_3

 = 7 + 21 + </u></em></strong><strong><em><u>35</u></em></strong><strong><em><u>

 = </u></em></strong><strong><em><u>63</u></em></strong><strong><em><u>

Similar questions