Math, asked by Mihir1001, 9 months ago

If {}^{n} C_1, \: {}^{n} C_2and[/tex] {}^{n} C_3[/tex]are in AP.
Then, find the value of \left[ {}^{n} C_1 + {}^{n} C_2 + {}^{n} C_3 \right]

Hints :—

1. r! = 1 \times 2 \times 3 \times .............. \times rr!=1×2×3×..............×r
2. \Large{ {}^{n} C_r = \frac{n!}{(n - r)! \times r!} }nCr​=(n−r)!×r!n!​

Correctly explained answer to be BRAINLIEST. ​

Answers

Answered by yaduvanshitab
5

ⁿC₁  , ⁿC₂  & ⁿC₃  are in AP

=> 2 * ⁿC₂ = ⁿC₁  +  ⁿC₃

=> 2 * n!/((n-2)!2!)   =  n!/(n-1)!1!   + n!/(n-3)!3!

=> 2 * n(n-1) / 2  =  n   + n(n-1)(n-2)/6

=>  6n(n-1) = 6n + n(n-1)(n-2)

=> 6(n-1) = 6 + (n-1)(n-2)

=> 6n - 6 = 6 + n² - 3n + 2

=> n² - 9n + 14 = 0

=> n² - 2n - 7n + 14 = 0

=> n(n-2) - 7(n-2) = 0

=> (n-7)(n-2) = 0

=> n = 7     n can not be less than 3 so n = 2 is not possible

⁷C₁ + ⁷C₂ + ⁷C₃

= 7 + 21 + 35

= 63

hope this helps you.

pls mark as brainliest.

Answered by pulakmath007
18

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1. Three terms a, b, c are said to be in Arithmetic Progression ( AP) if

2b = a + c

2.

r! = 1 \times 2 \times 3 \times ......... \times  r

3.

\large{ {}^{n} C_r = \frac{n!}{(n - r)! \times r!} }

GIVEN

{}^{n} C_1, {}^{n} C_2  \: and  \: {}^{n} C_3  \: are  \: in  \: AP

TO DETERMINE

{}^{n} C_1 + {}^{n} C_2 +  {}^{n} C_3

EVALUATION

Since

{}^{n} C_1, {}^{n} C_2  \: and  \: {}^{n} C_3  \: are  \: in  \: AP

So

2  \times {}^{n} C_2   =  \: {}^{n} C_1 \:  +  \: {}^{n} C_3 

 \displaystyle \: 2 \times  \frac{n!}{(n - 2)! \times 2!} = \frac{n!}{(n - 1)! \times 1!}  + \frac{n!}{(n - 3)! \times 3!}

 \displaystyle \:  \implies \: 2  \times  \frac{n(n - 1)}{2}  = n + \frac{n(n - 1)(n - 2)}{6}

 \displaystyle \:  \implies \:   (n - 1)  = 1 + \frac{(n - 1)(n - 2)}{6}  \: ( \because \: n \ne \: 0)

 \implies \: 6n - 6 = 6 +  {n}^{2}  - 3n + 2

 \implies \:  {n}^{2}  - 9n + 14 = 0

 \implies \:  {n}^{2}  - 2n  - 7n+ 14 = 0

 \implies \:  n(n - 2) - 7(n - 2) = 0

 \implies \:  (n - 2) (n - 7) = 0

So

either \: (n - 2)  = 0 \:  \: or \:  \:  (n - 7) = 0

so \: n \:  = 2 \:  \: or \: n \:  = 7

since \:  \: {}^{n} C_3 \:  \: exists \:  \: so \:  \: n \:  \geqslant 3

So

n \ne \: 2

So

n = 7

RESULT

{}^{n} C_1 + {}^{n} C_2 +  {}^{n} C_3

 = {}^{7} C_1 + {}^{7} C_2 +  {}^{7} C_3

 = 7 + 21 + 35

 = 63

Similar questions